No Arabic abstract
The perovskite Ba8CoNb6O24 comprises equilateral effective spin-1/2 Co2+ triangular layers separated by six non-magnetic layers. Susceptibility, specific heat and neutron scattering measurements combined with high-temperature series expansions and spin-wave calculations confirm that Ba8CoNb6O24 is basically a twodimensional (2D) magnet with no detectable spin anisotropy and no long-range magnetic ordering down to 0.06 K. In other words, Ba8CoNb6O24 is very close to be a realization of the paradigmatic spin-1/2 triangular Heisenberg model, which is not expected to exhibit symmetry breaking at finite temperature according to the Mermin and Wagner theorem.
We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim of understanding the observed broadening of $^{13}$C NMR lines in the organic spin liquid material $kappa$-(ET)$_2$Cu$_2$(CN)$_3$. For high temperatures down to $J/3$, we calculate local susceptibility near a nonmagnetic impurity and near a grain boundary for the nearest neighbor Heisenberg model in high temperature series expansion. We find that the local susceptibility decays to the uniform one in few lattice spacings, and for a low density of impurities we would not be able to explain the line broadening present in the experiments already at elevated temperatures. At low temperatures, we assume a gapless spin liquid with a Fermi surface of spinons. We calculate the local susceptibility in the mean field and also go beyond the mean field by Gutzwiller projection. The zero temperature local susceptibility decays as a power law and oscillates at $2 k_F$. As in the high temperature analysis we find that a low density of impurities is not able to explain the observed broadening of the lines. We are thus led to conclude that there is more disorder in the system. We find that a large density of point-like disorder gives broadening that is consistent with the experiment down to about 5K, but that below this temperature additional mechanism is likely needed.
We study the spin liquid candidate of the spin-$1/2$ $J_1$-$J_2$ Heisenberg antiferromagnet on the triangular lattice by means of density matrix renormalization group (DMRG) simulations. By applying an external Aharonov-Bohm flux insertion in an infinitely long cylinder, we find unambiguous evidence for gapless $U(1)$ Dirac spin liquid behavior. The flux insertion overcomes the finite size restriction for energy gaps and clearly shows gapless behavior at the expected wave-vectors. Using the DMRG transfer matrix, the low-lying excitation spectrum can be extracted, which shows characteristic Dirac cone structures of both spinon-bilinear and monopole excitations. Finally, we confirm that the entanglement entropy follows the predicted universal response under the flux insertion.
Ba$_8$CoNb$_6$O$_{24}$ presents a system whose Co$^{2+}$ ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the $S = 1/2$ TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend towards zero-temperature order. Below 0.1 K, however, our low-field measurements show an nexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the $(H,T)$ phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear up-up-down state. Ba$_8$CoNb$_6$O$_{24}$ therefore offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the $S = 1/2$ Heisenberg TLAFM.
Spin liquids occuring in 2D frustrated spin systems were initially assumed to appear at strongest frustration, but evidence grows that they more likely intervene at transitions between two different types of order. To identify if this is more general, we here analyze a generalization of the spatially anisotropic triangular lattice (SATL) with antiferromagnetic Heisenberg interactions, the spatially emph{completely} anisotropic triangular lattice (SCATL). Using Takahashis modified spin-wave theory, complemented by exact diagonalizations, we find indications that indeed different kinds of order are always separated by disordered phases. Our results further suggest that two gapped non-magnetic phases, identified as distinct in the SATL, are actually continuously connected via the additional anisotropy of the SCATL. Finally, measurements on several materials found magnetic long-range order where calculations on the SATL predict disordered behavior. Our results suggest a simple explanation through the additional anisotropy of the SCATL, which locates the corresponding parameter values in ordered phases. The studied model might therefore not only yield fundamental insight into quantum disordered phases, but should also be relevant for experiments on the quest for spin liquids.
We study the spin-$1/2$ Heisenberg model on the triangular lattice with the antiferromagnetic first ($J_1$) and second ($J_2$) nearest-neighbor interactions using density matrix renormalization group. By studying the spin correlation function, we find a $120^{circ}$ magnetic order phase for $J_2 lesssim 0.07 J_1$ and a stripe antiferromagnetic phase for $J_2 gtrsim 0.15 J_1$. Between these two phases, we identify a spin liquid region characterized by the exponential decaying spin and dimer correlations, as well as the large spin singlet and triplet excitation gaps on finite-size systems. We find two near degenerating ground states with distinct properties in two sectors, which indicates more than one spin liquid candidates in this region. While the sector with spinon is found to respect the time reversal symmetry, the even sector without a spinon breaks such a symmetry for finite-size systems. Furthermore, we detect the signature of the fractionalization by following the evolution of different ground states with inserting spin flux into the cylinder system. Moreover, by tuning the anisotropic bond coupling, we explore the nature of the spin liquid phase and find the optimal parameter region for the gapped $Z_2$ spin liquid.