Do you want to publish a course? Click here

The Higgs mass and natural supersymmetric spectrum from the landscape

234   0   0.0 ( 0 )
 Added by Howard Baer
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In supersymmetric models where the superpotential mu term is generated with mu<< m_{soft} (e.g. from radiative Peccei-Quinn symmetry breaking or compactified string models with sequestration and stabilized moduli), and where the string landscape 1. favors soft supersymmetry (SUSY) breaking terms as large as possible and 2. where the anthropic condition that electroweak symmetry is properly broken with a weak scale m_{W,Z,h}~100 GeV ({it i.e.} not too weak of weak interactions), then these combined landscape/anthropic requirements act as an attractor pulling the soft SUSY breaking terms towards values required by models with radiatively-driven naturalness: near the line of criticality where electroweak symmetry is barely broken and the Higgs mass is ~125 GeV. The pull on the soft terms serves to ameliorate the SUSY flavor and CP problems. The resulting sparticle mass spectrum may barely be accessible at high-luminosity LHC while the required light higgsinos should be visible at a linear e^+e^- collider with sqrt{s}>2m(higgsino).



rate research

Read More

Predictions for the scale of SUSY breaking from the string landscape go back at least a decade to the work of Denef and Douglas on the statistics of flux vacua. The assumption that an assortment of SUSY breaking F and D terms are present in the hidden sector, and their values are uniformly distributed in the landscape of D=4, N=1 effective supergravity models, leads to the expectation that the landscape pulls towards large values of soft terms favored by a power law behavior P(m(soft))~ m(soft)^n. On the other hand, similar to Weinbergs prediction of the cosmological constant, one can assume an anthropic selection of weak scales not too far from the measured value characterized by m(W,Z,h)~ 100 GeV. Working within a fertile patch of gravity-mediated low energy effective theories where the superpotential mu term is << m(3/2), as occurs in models such as radiative breaking of Peccei-Quinn symmetry, this biases statistical distributions on the landscape by a cutoff on the parameter Delta(EW), which measures fine-tuning in the m(Z)-mu mass relation. The combined effect of statistical and anthropic pulls turns out to favor low energy phenomenology that is more or less agnostic to UV physics. While a uniform selection n=0 of soft terms produces too low a value for m(h), taking n=1 or 2 produce most probabilistically m(h)~125 GeV for negative trilinear terms. For n>=1, there is a pull towards split generations with m(squarks,sleptons)(1,2)~10-30 TeV whilst m(t1)~ 1-2 TeV. The most probable gluino mass comes in at ~ 3-4 TeV--apparently beyond the reach of HL-LHC (although the required quasi-degenerate higgsinos should still be within reach). We comment on consequences for SUSY collider and dark matter searches.
The methodology of the heterotic mini-landscape attempts to zero in on phenomenologically viable corners of the string landscape where the effective low energy theory is the Minimal Supersymmetric Standard Model with localized grand unification. The gaugino mass pattern is that of mirage-mediation. The magnitudes of various SM Yukawa couplings point to a picture where scalar soft SUSY breaking terms are related to the geography of fields in the compactified dimensions. Higgs fields and third generation scalars extend to the bulk and occur in split multiplets with TeV scale soft masses. First and second generation scalars, localized at orbifold fixed points or tori with enhanced symmetry, occur in complete GUT multiplets and have much larger masses. This picture can be matched onto the parameter space of generalized mirage mediation. Naturalness considerations, the requirement of the observed electroweak symmetry breaking pattern, and LHC bounds on m(gluino) together limit the gravitino mass to the m_{3/2}~ 5-60 TeV range. The mirage unification scale is bounded from below with the limit depending on the ratio of squark to gravitino masses. We show that while natural SUSY in this realization may escape detection even at the high luminosity LHC, the high energy LHC with sqrt{s}=33 TeV could unequivocally confirm or exclude this scenario. It should be possible to detect the expected light higgsinos at the ILC if these are kinematically accessible, and possibly also discriminate the expected compression of gaugino masses in the natural mini-landscape picture from the mass pattern expected in models with gaugino mass unification. The thermal WIMP signal should be accessible via direct detection searches at the multi-ton noble liquid detectors such as Xenon-nT or LZ.
In the Minimal Supersymmetric Standard Model (the MSSM), the electroweak symmetry is restored as supersymmetry-breaking terms are turned off. We describe a generic extension of the MSSM where the electroweak symmetry is broken in the supersymmetric limit. We call this limit the sEWSB phase, short for supersymmetric electroweak symmetry breaking. We define this phase in an effective field theory that only contains the MSSM degrees of freedom. The sEWSB vacua naturally have an inverted scalar spectrum, where the heaviest CP-even Higgs state has Standard Model-like couplings to the massive vector bosons; experimental constraints in the scalar Higgs sector are more easily satisfied than in the MSSM.
Recent work on calculating string theory landscape statistical predictions for the Higgs and sparticle mass spectrum from an assumed power-law soft term distribution yields an expectation for m(h)~ 125 GeV with sparticles (save light higgsinos) somewhat beyond reach of high-luminosity LHC. A recent examination of statistics of SUSY breaking in IIB string models with stabilized moduli suggests a power-law for models based on KKLT stabilization and uplifting while models based on large-volume scenario (LVS) instead yield an expected logarithmic soft term distribution. We evaluate statistical distributions for Higgs and sparticle masses from the landscape with a log soft term distribution and find the Higgs mass still peaks around ~125 GeV with sparticles beyond LHC reach, albeit with somewhat softer distributions than those arising from a power-law.
To obtain the most accurate predictions for the Higgs masses in the minimal supersymmetric model (MSSM), one should compute the full set of one-loop radiative corrections, resum the large logarithms to all orders, and add the dominant two-loop effects. A complete computation following this procedure yields a complex set of formulae which must be analyzed numerically. We discuss a very simple approximation scheme which includes the most important terms from each of the three components mentioned above. We estimate that the Higgs masses computed using our scheme lie within 2 GeV of their theoretically predicted values over a very large fraction of MSSM parameter space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا