No Arabic abstract
Predictions for the scale of SUSY breaking from the string landscape go back at least a decade to the work of Denef and Douglas on the statistics of flux vacua. The assumption that an assortment of SUSY breaking F and D terms are present in the hidden sector, and their values are uniformly distributed in the landscape of D=4, N=1 effective supergravity models, leads to the expectation that the landscape pulls towards large values of soft terms favored by a power law behavior P(m(soft))~ m(soft)^n. On the other hand, similar to Weinbergs prediction of the cosmological constant, one can assume an anthropic selection of weak scales not too far from the measured value characterized by m(W,Z,h)~ 100 GeV. Working within a fertile patch of gravity-mediated low energy effective theories where the superpotential mu term is << m(3/2), as occurs in models such as radiative breaking of Peccei-Quinn symmetry, this biases statistical distributions on the landscape by a cutoff on the parameter Delta(EW), which measures fine-tuning in the m(Z)-mu mass relation. The combined effect of statistical and anthropic pulls turns out to favor low energy phenomenology that is more or less agnostic to UV physics. While a uniform selection n=0 of soft terms produces too low a value for m(h), taking n=1 or 2 produce most probabilistically m(h)~125 GeV for negative trilinear terms. For n>=1, there is a pull towards split generations with m(squarks,sleptons)(1,2)~10-30 TeV whilst m(t1)~ 1-2 TeV. The most probable gluino mass comes in at ~ 3-4 TeV--apparently beyond the reach of HL-LHC (although the required quasi-degenerate higgsinos should still be within reach). We comment on consequences for SUSY collider and dark matter searches.
Recent work on calculating string theory landscape statistical predictions for the Higgs and sparticle mass spectrum from an assumed power-law soft term distribution yields an expectation for m(h)~ 125 GeV with sparticles (save light higgsinos) somewhat beyond reach of high-luminosity LHC. A recent examination of statistics of SUSY breaking in IIB string models with stabilized moduli suggests a power-law for models based on KKLT stabilization and uplifting while models based on large-volume scenario (LVS) instead yield an expected logarithmic soft term distribution. We evaluate statistical distributions for Higgs and sparticle masses from the landscape with a log soft term distribution and find the Higgs mass still peaks around ~125 GeV with sparticles beyond LHC reach, albeit with somewhat softer distributions than those arising from a power-law.
The methodology of the heterotic mini-landscape attempts to zero in on phenomenologically viable corners of the string landscape where the effective low energy theory is the Minimal Supersymmetric Standard Model with localized grand unification. The gaugino mass pattern is that of mirage-mediation. The magnitudes of various SM Yukawa couplings point to a picture where scalar soft SUSY breaking terms are related to the geography of fields in the compactified dimensions. Higgs fields and third generation scalars extend to the bulk and occur in split multiplets with TeV scale soft masses. First and second generation scalars, localized at orbifold fixed points or tori with enhanced symmetry, occur in complete GUT multiplets and have much larger masses. This picture can be matched onto the parameter space of generalized mirage mediation. Naturalness considerations, the requirement of the observed electroweak symmetry breaking pattern, and LHC bounds on m(gluino) together limit the gravitino mass to the m_{3/2}~ 5-60 TeV range. The mirage unification scale is bounded from below with the limit depending on the ratio of squark to gravitino masses. We show that while natural SUSY in this realization may escape detection even at the high luminosity LHC, the high energy LHC with sqrt{s}=33 TeV could unequivocally confirm or exclude this scenario. It should be possible to detect the expected light higgsinos at the ILC if these are kinematically accessible, and possibly also discriminate the expected compression of gaugino masses in the natural mini-landscape picture from the mass pattern expected in models with gaugino mass unification. The thermal WIMP signal should be accessible via direct detection searches at the multi-ton noble liquid detectors such as Xenon-nT or LZ.
In this paper, we establish a fully string-theoretic framework for calculating one-loop Higgs masses directly from first principles in perturbative closed string theories. Our framework makes no assumptions other than worldsheet modular invariance and is therefore applicable to all closed strings, regardless of the specific string construction utilized. This framework can also be employed even when spacetime supersymmetry is broken (and even when this breaking occurs at the Planck scale), and can be utilized for all scalar Higgs fields, regardless of the particular gauge symmetries they break. This therefore includes the Higgs field responsible for electroweak symmetry breaking in the Standard Model. Notably, using our framework, we demonstrate that a gravitational modular anomaly generically relates the Higgs mass to the one-loop cosmological constant, thereby yielding a string-theoretic connection between the two fundamental quantities which are known to suffer from hierarchy problems in the absence of spacetime supersymmetry. We also discuss a number of crucial issues involving the use and interpretation of regulators in UV/IR-mixed theories such as string theory, and the manner in which one can extract an EFT description from such theories. Finally, we analyze the running of the Higgs mass within such an EFT description, and uncover the existence of a dual IR region which emerges at high energies as the consequence of an intriguing scale-inversion duality symmetry. We also identify a generic stringy effective potential for the Higgs fields in such theories. Our results can therefore serve as the launching point for a rigorous investigation of gauge hierarchy problems in string theory.
In the gauge-Higgs unification with multiple extra spaces, the Higgs self-coupling is of the order of $g^2$ and Higgs is predicted to be light, being consistent with the LHC results. When the gauge group is simple, the weak mixing angle is also predictable. We address a question whether there exists a model of gauge-Higgs unification in 6-dimensional space-time, which successfully predicts the mass ratios of the Higgs boson and weak gauge bosons. First, by use of a useful formula we give a general argument on the condition to get a realistic prediction of the weak mixing angle $sin^{2}theta_{W} = 1/4$, and find that triplet and sextet representations of the minimal SU(3) gauge group lead to the realistic prediction. Concerning the Higgs mass, we notice that in the models with one Higgs doublet, the predicted Higgs mass is always the same: $M_H = 2 M_W$. However, by extending our discussion to the models with two Higgs doublets, the situation changes: we obtain an interesting prediction $M_{H} leq 2M_{W}$ at the leading order of the perturbation. Thus it is possible to recover the observed Higgs mass, 125 GeV, for a suitable choice of the parameter. The situation is in clear contrast to the case of the minimal supersymmetric standard model, where $M_{H} leq M_{Z}$ at the classical level and the predicted Higgs mass cannot recover the observed value.
Recently it has been recognized that in compactified string/M-theories that satisfy cosmological constraints, it is possible to derive some robust and generic predictions for particle physics and cosmology with very mild assumptions. When the matter and gauge content below the compactification scale is that of the MSSM, it is possible to make precise predictions. In this case, we predict that there will be a single Standard Model-like Higgs boson with a calculable mass 105 GeV $lesssim M_h lesssim$ 129 GeV depending on tan beta (the ratio of the Higgs vevs in the MSSM). For tan beta > 7, the prediction is : 122 GeV $lesssim M_h lesssim$ 129 GeV.