No Arabic abstract
The ability to transport quantum information across some distance can facilitate the design and operation of a quantum processor. One-dimensional spin chains provide a compact platform to realize scalable spin transport for a solid-state quantum computer. Here, we model odd-sized donor chains in silicon under a range of experimental non-idealities, including variability of donor position within the chain. We show that the tolerance against donor placement inaccuracies is greatly improved by operating the spin chain in a mode where the electrons are confined at the Si-SiO$_2$ interface. We then estimate the required timescales and exchange couplings, and the level of noise that can be tolerated to achieve high fidelity transport. We also propose a protocol to calibrate and initialize the chain, thereby providing a complete guideline for realizing a functional donor chain and utilizing it for spin transport.
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer. Despite long coherence times, achieving uniform magnetic control remains a hurdle for scale-up due to challenges in high-frequency magnetic field control at the nanometre-scale. Here, we present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot. The key advantage of utilising a donor-based system is that we can engineer the number of donor nuclei in each quantum dot. By creating multi-donor dots with antiparallel nuclear spin states and multi-electron occupation we can minimise the longitudinal magnetic field gradient, known to couple charge noise into the device and dephase the qubit. We describe the operation of the qubit and show that by minimising the hyperfine interaction of the nuclear spins we can achieve $pi/2-X$ gate error rates of $sim 10^{-4}$ using realistic noise models. We highlight that the low charge noise environment in these all-epitaxial phosphorus-doped silicon qubits will facilitate the realisation of strong coupling of the qubit to superconducting microwave cavities allowing for long-distance two-qubit operations.
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%. For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second. However, manufacturing a scalable quantum processor with this method is considered challenging, because of the exponential sensitivity of the exchange interaction that mediates the coupling between the qubits. Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $^{31}$P donors implanted in silicon. The coupling strength, $J = 32.06 pm 0.06$ MHz, is measured spectroscopically with unprecedented precision. Since the coupling is weaker than the electron-nuclear hyperfine coupling $A approx 90$ MHz which detunes the two electrons, a native two-qubit Controlled-Rotation gate can be obtained via a simple electron spin resonance pulse. This scheme is insensitive to the precise value of $J$, which makes it suitable for the scale-up of donor-based quantum computers in silicon that exploit the Metal-Oxide-Semiconductor fabrication protocols commonly used in the classical electronics industry.
The detection of ensembles of spins under ambient conditions has revolutionized the biological, chemical, and physical sciences through magnetic resonance imaging and nuclear magnetic resonance. Pushing sensing capabilities to the individual-spin level would enable unprecedented applications such as single molecule structural imaging; however, the weak magnetic fields from single spins are undetectable by conventional far-field resonance techniques. In recent years, there has been a considerable effort to develop nanoscale scanning magnetometers, which are able to measure fewer spins by bringing the sensor in close proximity to its target. The most sensitive of these magnetometers generally require low temperatures for operation, but measuring under ambient conditions (standard temperature and pressure) is critical for many imaging applications, particularly in biological systems. Here we demonstrate detection and nanoscale imaging of the magnetic field from a single electron spin under ambient conditions using a scanning nitrogen-vacancy (NV) magnetometer. Real-space, quantitative magnetic-field images are obtained by deterministically scanning our NV magnetometer 50 nanometers above a target electron spin, while measuring the local magnetic field using dynamically decoupled magnetometry protocols. This single-spin detection capability could enable single-spin magnetic resonance imaging of electron spins on the nano- and atomic scales and opens the door for unique applications such as mechanical quantum state transfer.
We propose qubits based on shallow donor electron spins in germanium. Spin-orbit interaction for donor spins in germanium is in many orders of magnitude stronger than in silicon. In a uniform bulk material it leads to very short spin lifetimes. However the lifetime increases dramatically when the donor is placed into a quasi-2D phononic crystal and the energy of the Zeeman splitting is tuned to lie within a phonon bandgap. In this situation single phonon processes are suppressed by energy conservation. The remaining two-phonon decay channel is very slow. The Zeeman splitting within the gap can be fine tuned to induce a strong, long-range coupling between the spins of remote donors via exchange by virtual phonons. This, in turn, opens a very efficient way to manipulate the quits. We explore various geometries of phononic crystals in order to maximize the coherent qubit-qubit coupling while keeping the decay rate minimal. We find that phononic crystals with unit cell sizes of 100-150 nm are viable candidates for quantum computing applications and suggest several spin-resonance experiments to verify our theoretical predictions.
Charge noise is the main hurdle preventing high-fidelity operation, in particular that of two-qubit gates, of semiconductor-quantum-dot-based spin qubits. While certain sweet spots where charge noise is substantially suppressed have been demonstrated in several types of spin qubits, the existence of one for coupled singlet-triplet qubits is unclear. We theoretically demonstrate, using full configuration-interaction calculations, that a range of nearly sweet spots appear in the coupled singlet-triplet qubit system when a strong enough magnetic field is applied externally. We further demonstrate that ramping to and from the judiciously chosen nearly sweet spot using sequences based on the shortcut to adiabaticity offers maximal gate fidelities under charge noise and phonon-induced decoherence. These results should facilitate realization of high-fidelity two-qubit gates in singlet-triplet qubit systems.