Do you want to publish a course? Click here

Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing

55   0   0.0 ( 0 )
 Added by Bryan Ford
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

While showing great promise, Bitcoin requires users to wait tens of minutes for transactions to commit, and even then, offering only probabilistic guarantees. This paper introduces ByzCoin, a novel Byzantine consensus protocol that leverages scalable collective signing to commit Bitcoin transactions irreversibly within seconds. ByzCoin achieves Byzantine consensus while preserving Bitcoins open membership by dynamically forming hash power-proportionate consensus groups that represent recently-successful block miners. ByzCoin employs communication trees to optimize transaction commitment and verification under normal operation while guaranteeing safety and liveness under Byzantine faults, up to a near-optimal tolerance of f faulty group members among 3f + 2 total. ByzCoin mitigates double spending and selfish mining attacks by producing collectively signed transaction blocks within one minute of transaction submission. Tree-structured communication further reduces this latency to less than 30 seconds. Due to these optimizations, ByzCoin achieves a throughput higher than PayPal currently handles, with a confirmation latency of 15-20 seconds.

rate research

Read More

73 - James Chiang 2020
Smart contracting protocols promise to regulate the transfer of cryptocurrency amongst participants in a trustless manner. A safe smart contract implementation should ensure that each participant can always append a contract transaction to the blockchain in order move the contract towards secure completion. To this goal, we propose Bitcoin Trace-Net, a contract verification framework which generates an executable symbolic model from the underlying contract implementation. A Trace-Net model consists of a Petri Net formalism enriched with a Dolev-Yao-like actor knowledge model. The explicit symbolic actor knowledge model supports the verification of contracts featuring cryptographic sub-protocols, which may not be observable on the blockchain. Trace-Net is sufficiently expressive to accurately model blockchain semantics such as the delay between a transaction broadcast and its subsequent confirmation, as well as adversarial blockchain reorganizations of finite depths, both of which can break smart contract safety. As an implementation level framework, Trace-Net can be instantiated at run-time to monitor and verify smart contract protocol executions.
We prove Bitcoin is secure under temporary dishonest majority. We assume the adversary can corrupt a specific fraction of parties and also introduce crash failures, i.e., some honest participants are offline during the execution of the protocol. We demand a majority of honest online participants on expectation. We explore three different models and present the requirements for proving Bitcoins security in all of them: we first examine a synchronous model, then extend to a bounded delay model and last we consider a synchronous model that allows message losses.
The proof-of-work consensus protocol suffers from two main limitations: waste of energy and offering only probabilistic guarantees about the status of the blockchain. This paper introduces SklCoin, a new Byzantine consensus protocol and its corresponding software architecture. This protocol leverages two ideas: 1) the proof-of-stake concept to dynamically form stake proportionate consensus groups that represent block miners (stakeholders), and 2) scalable collective signing to efficiently commit transactions irreversibly. SklCoin has immediate finality characteristic where all miners instantly agree on the validity of blocks. In addition, SklCoin supports high transaction rate because of its fast miner election mechanism
We focus on the problem of botnet orchestration and discuss how attackers can leverage decentralised technologies to dynamically control botnets with the goal of having botnets that are resilient against hostile takeovers. We cover critical elements of the Bitcoin blockchain and its usage for `floating command and control servers. We further discuss how blockchain-based botnets can be built and include a detailed discussion of our implementation. We also showcase how specific Bitcoin APIs can be used in order to write extraneous data to the blockchain. Finally, while in this paper, we use Bitcoin to build our resilient botnet proof of concept, the threat is not limited to Bitcoin blockchain and can be generalized.
In this short paper we argue that to combat APTs, organizations need a strategic level shift away from a traditional prevention centered approach to that of a response centered one. Drawing on the information warfare (IW) paradigm in military studies, and using Dynamic Capability Theory (DCT), this research examines the applicability of IW capabilities in the corporate domain. We propose a research framework to argue that conventional prevention centred response capabilities; such as incident response capabilities and IW centred security capabilities can be integrated into IW enabled dynamic response capabilities that improve enterprise security performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا