No Arabic abstract
In this short paper we argue that to combat APTs, organizations need a strategic level shift away from a traditional prevention centered approach to that of a response centered one. Drawing on the information warfare (IW) paradigm in military studies, and using Dynamic Capability Theory (DCT), this research examines the applicability of IW capabilities in the corporate domain. We propose a research framework to argue that conventional prevention centred response capabilities; such as incident response capabilities and IW centred security capabilities can be integrated into IW enabled dynamic response capabilities that improve enterprise security performance.
Case-based learning is a powerful pedagogical method of creating dialogue between theory and practice. CBL is particularly suited to executive learning as it instigates critical discussion and draws out relevant experiences. In this paper we used a real-world case to teach Information Security Management to students in Management Information Systems. The real-world case is described in a legal indictment, T-mobile USA Inc v Huawei Device USA Inc. and Huawei Technologies Co. LTD, alleging theft of intellectual property and breaches of contract concerning confidentiality and disclosure of sensitive information. The incident scenario is interesting as it relates to a business asset that has both digital and physical components that has been compromised through an unconventional cyber-physical attack facilitated by insiders. The scenario sparked an interesting debate among students about the scope and definition of security incidents, the role and structure of the security unit, the utility of compliance-based approaches to security, and the inadequate use of threat intelligence in modern security strategies.
Teaching cases based on stories about real organizations are a powerful means of storytelling. These cases closely parallel real-world situations and can deliver on pedagogical objectives as writers can use their creative license to craft a storyline that better focuses on the specific principles, concepts, and challenges they want to address in their teaching. The method instigates critical discussion, draws out relevant experiences from students, encourages questioning of accepted practices, and creates dialogue between theory and practice. We present Horizon, a case study of a firm that suffers a catastrophic incident of Intellectual Property (IP) theft. The case study was developed to teach information security management (ISM) principles in key areas such as strategy, risk, policy and training to postgraduate Information Systems and Information Technology students at the University of Melbourne, Australia.
Security is considered one of the top ranked risks of Cloud Computing (CC) due to the outsourcing of sensitive data onto a third party. In addition, the complexity of the cloud model results in a large number of heterogeneous security controls that must be consistently managed. Hence, no matter how strongly the cloud model is secured, organizations continue suffering from lack of trust on CC and remain uncertain about its security risk consequences. Traditional risk management frameworks do not consider the impact of CC security risks on the business objectives of the organizations. In this paper, we propose a novel Cloud Security Risk Management Framework (CSRMF) that helps organizations adopting CC identify, analyze, evaluate, and mitigate security risks in their Cloud platforms. Unlike traditional risk management frameworks, CSRMF is driven by the business objectives of the organizations. It allows any organization adopting CC to be aware of cloud security risks and align their low-level management decisions according to high-level business objectives. In essence, it is designed to address impacts of cloud-specific security risks into business objectives in a given organization. Consequently, organizations are able to conduct a cost-value analysis regarding the adoption of CC technology and gain an adequate level of confidence in Cloud technology. On the other hand, Cloud Service Providers (CSP) are able to improve productivity and profitability by managing cloud-related risks. The proposed framework has been validated and evaluated through a use-case scenario.
Temporal epistemic logic is a well-established framework for expressing agents knowledge and how it evolves over time. Within language-based security these are central issues, for instance in the context of declassification. We propose to bring these two areas together. The paper presents a computational model and an epistemic temporal logic used to reason about knowledge acquired by observing program outputs. This approach is shown to elegantly capture standard notions of noninterference and declassification in the literature as well as information flow properties where sensitive and public data intermingle in delicate ways.
A digital security breach, by which confidential information is leaked, does not only affect the agent whose system is infiltrated, but is also detrimental to other agents socially connected to the infiltrated system. Although it has been argued that these externalities create incentives to under-invest in security, this presumption is challenged by the possibility of strategic adversaries that attack the least protected agents. In this paper we study a new model of security games in which agents share tokens of sensitive information in a network of contacts. The agents have the opportunity to invest in security to protect against an attack that can be either strategically or randomly targeted. We show that, in the presence of random attack, under-investments always prevail at the Nash equilibrium in comparison with the social optimum. Instead, when the attack is strategic, either under-investments or over-investments are possible, depending on the network topology and on the characteristics of the process of the spreading of information. Actually, agents invest more in security than socially optimal when dependencies among agents are low (which can happen because the information network is sparsely connected or because the probability that information tokens are shared is small). These over-investments pass on to under-investments when information sharing is more likely (and therefore, when the risk brought by the attack is higher).