Do you want to publish a course? Click here

Vertex algebras and 4-manifold invariants

67   0   0.0 ( 0 )
 Added by Mykola Dedushenko
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a way of computing 4-manifold invariants, old and new, as chiral correlation functions in half-twisted 2d $mathcal{N}=(0,2)$ theories that arise from compactification of fivebranes. Such formulation gives a new interpretation of some known statements about Seiberg-Witten invariants, such as the basic class condition, and gives a prediction for structural properties of the multi-monopole invariants and their non-abelian generalizations.



rate research

Read More

The Kuperberg invariant is a topological invariant of closed 3-manifolds based on finite-dimensional Hopf algebras. In this paper, we initiate the program of constructing 4-manifold invariants in the spirit of Kuperbergs 3-manifold invariant. We utilize a structure called a Hopf triplet, which consists of three Hopf algebras and a bilinear form on each pair subject to certain compatibility conditions. In our construction, we present 4-manifolds by their trisection diagrams, a four-dimensional analog of Heegaard diagrams. The main result is that every Hopf triplet yields a diffeomorphism invariant of closed 4-manifolds. In special cases, our invariant reduces to Crane-Yetter invariants and generalized dichromatic invariants, and conjecturally Kashaevs invariant. As a starting point, we assume that the Hopf algebras involved in the Hopf triplets are semisimple. We speculate that relaxing semisimplicity will lead to even richer invariants.
We provide a physical definition of new homological invariants $mathcal{H}_a (M_3)$ of 3-manifolds (possibly, with knots) labeled by abelian flat connections. The physical system in question involves a 6d fivebrane theory on $M_3$ times a 2-disk, $D^2$, whose Hilbert space of BPS states plays the role of a basic building block in categorification of various partition functions of 3d $mathcal{N}=2$ theory $T[M_3]$: $D^2times S^1$ half-index, $S^2times S^1$ superconformal index, and $S^2times S^1$ topologically twisted index. The first partition function is labeled by a choice of boundary condition and provides a refinement of Chern-Simons (WRT) invariant. A linear combination of them in the unrefined limit gives the analytically continued WRT invariant of $M_3$. The last two can be factorized into the product of half-indices. We show how this works explicitly for many examples, including Lens spaces, circle fibrations over Riemann surfaces, and plumbed 3-manifolds.
Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[M_3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.
In this note we address the question whether one can recover from the vertex operator algebra associated with a four-dimensional N=2 superconformal field theory the deformation quantization of the Higgs branch of vacua that appears as a protected subsector in the three-dimensional circle-reduced theory. We answer this question positively if the UV R-symmetries do not mix with accidental (topological) symmetries along the renormalization group flow from the four-dimensional theory on a circle to the three-dimensional theory. If they do mix, we still find a deformation quantization but at different values of its period.
Recently, Gaiotto and Rapcak proposed a generalization of $W_N$ algebra by considering the symmetry at the corner of the brane intersection (corner vertex operator algebra). The algebra, denoted as $Y_{L,M,N}$, is characterized by three non-negative integers $L, M, N$. It has a manifest triality automorphism which interchanges $L, M, N$, and can be obtained as a reduction of $W_{1+infty}$ through a pit in the plane partition representation. Later, Prochazka and Rapcak proposed a representation of $Y_{L,M,N}$ in terms of $L+M+N$ free bosons through a generalization of Miura transformation, where they use the fractional power differential operators. In this paper, we derive a $q$-deformation of their Miura transformation. It gives the free field representation for $q$-deformed $Y_{L,M,N}$, which is obtained as a reduction of the quantum toroidal algebra. We find that the $q$-deformed version has a simpler structure than the original one because of the Miki duality in the quantum toroidal algebra. For instance, one can find a direct correspondence between the operators obtained by the Miura transformation and those of the quantum toroidal algebra. Furthermore, we can show that the screening charges of both the symmetries are identical.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا