Do you want to publish a course? Click here

Constraints on frequency-dependent violations of Shapiro delay from GW150914

90   0   0.0 ( 0 )
 Added by Shantanu Desai
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

On 14th September 2015, a transient gravitational wave (GW150914) was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 experienced a Shapiro delay due to the gravitational potential of the mass distribution along the line of sight of about 1800 days. Also, the near-simultaneous arrival of gravitons over a frequency range of about 100 Hz within a 0.2 second window allows us to constrain any violations of Shapiro delay and Einsteins equivalence principle between the gravitons at different frequencies. From the calculated Shapiro delay and the observed duration of the signal, frequency-dependent violations of the equivalence principle for gravitons are constrained to an accuracy of $mathcal{O}(10^{-9})$



rate research

Read More

On 22nd September 2017, the IceCube Collaboration detected a neutrino with energy of about 290 TeV from the direction of the gamma-ray blazar TXS 0506+056, located at a distance of about 1.75 Gpc. During the same time, enhanced gamma-ray flaring was also simultaneously observed from multiple telescopes, giving rise to only the second coincident astrophysical neutrino/photon observation after SN 1987A. We point out that for this event, both neutrinos and photons encountered a Shapiro delay of about 6300 days along the way from the source. From this delay and the relative time difference between the neutrino and photon arrival times, one can constrain violations of Einsteins Weak Equivalence Principle (WEP) for TeV neutrinos. We constrain such violations of WEP using the Parameterized Post-Newtonian (PPN) parameter $gamma$, which is given by $|gamma_{rm { u}}-gamma_{rm{EM}}|<5.5 times 10^{-2}$, after assuming time difference of 175 days between neutrino and photon arrival times.
Lorentz Invariance Violation in Quantum Gravity (QG) models or a non-zero photon mass, $m_gamma$, would lead to an energy-dependent propagation speed for photons, such that photons of different energies from a distant source would arrive at different times, even if they were emitted simultaneously. By developing source-by-source, Monte Carlo-based forward models for such time delays from Gamma Ray Bursts, and marginalising over empirical noise models describing other contributions to the time delay, we derive constraints on $m_gamma$ and the QG length scale, $ell_{rm QG}$, using spectral lag data from the BATSE satellite. We find $m_gamma < 4.0 times 10^{-5} , h , {rm eV}/c^2$ and $ell_{rm QG} < 5.3 times 10^{-18} , h , {rm , GeV^{-1}}$ at 95% confidence, and demonstrate that these constraints are robust to the choice of noise model. The QG constraint is among the tightest from studies which consider multiple Gamma Ray Bursts and the constraint on $m_gamma$, although weaker than from using radio data, provides an independent constraint which is less sensitive to the effects of dispersion by electrons.
We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, accounting for all the spin-weighted quadrupolar modes, and separately accounting for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported in LVC_PE[1] (at 90% confidence), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Followup simulations performed using previously-estimated binary parameters most resemble the data. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz in [64 - 82M_odot], mass ratio q = m2/m1 in [0.6,1], and effective aligned spin chi_eff in [-0.3, 0.2], where chi_{eff} = (S1/m1 + S2/m2) cdothat{L} /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and chi_{eff} are consistent with the data. Though correlated, the components spins (both in magnitude and directions) are not significantly constrained by the data. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black holes redshifted mass is consistent with Mf,z between 64.0 - 73.5M_odot and the final black holes dimensionless spin parameter is consistent with af = 0.62 - 0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to LVC_PE[1].
We obtain stringent constraints on near-horizon deviations of a black hole from the Kerr geometry by performing a long-duration Bayesian analysis of the gravitational-wave data immediately following GW150914. GW150914 was caused by a binary system that merged to form a final compact object. We parameterize deviations of this object from a Kerr black hole by modifying its boundary conditions from full absorption to full reflection, thereby modeling it as a horizonless ultracompact object. Such modifications result in the emission of long-lived monochromatic quasinormal modes after the merger. These modes would extract energy on the order of a few solar masses from the final object, making them observable by LIGO. By putting bounds on the existence of these modes, we show that the Kerr geometry is not modified down to distances as small as $4 times 10^{-16}$ meters away from the horizon. Our results indicate that the post-merger object formed by GW150914 is a black hole that is well described by the Kerr geometry.
101 - Anuradha Samajdar 2019
Using a deformed dispersion relation for gravitational waves, Advanced LIGO and Advanced Virgo have been able to place constraints on violations of local Lorentz invariance as well as the mass of the graviton. We summarise the method to obtain the current bounds from the 10 significant binary black hole detections made during the first and second observing runs of the above detectors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا