Using a deformed dispersion relation for gravitational waves, Advanced LIGO and Advanced Virgo have been able to place constraints on violations of local Lorentz invariance as well as the mass of the graviton. We summarise the method to obtain the current bounds from the 10 significant binary black hole detections made during the first and second observing runs of the above detectors.
We present new constraints on Lorentz symmetry (LS) violations with lunar laser ranging (LLR). Those constraints are derived in the standard-model extension (SME) framework aiming at parameterizing any LS deviations in all sectors of physics. We restrict ourself to two sectors namely the pure gravitational sector of the minimal SME and the gravity-matter coupling. We describe the adopted method and compare our results to previous analysis based on theoretical grounds. This work constitutes the first direct experimental determination of the SME coefficients using LLR measurements.
Spacetime nonmetricity can be studied experimentally through its couplings to fermions and photons. We use recent high-precision searches for Lorentz violation to deduce first constraints involving the 40 independent nonmetricity components down to levels of order $10^{-43}$ GeV.
Current limits on violation of local Lorentz invariance in the photon sector are derived mainly from experiments that search for a spatial anisotropy in the speed of light. The presently operating gravitational wave detectors are Michelson interferometers with long effective arms, 4e5 m, and sensitive to a fringe shift 2e-9. Therefore they can be used to test for a difference in the speed of light in the two arms, as modulated bi-annualy by the orientation of the Earths velocity with respect to the direction of motion of the local system. A limit can be set on the Robertson-Mansouri-Sexl parameter PMM < 10e-15, as compared to its present limit of PMM < 2e-10, an improvement of five orders of magnitude.
Recently, first limits on putative Lorentz invariance violation coefficients in the pure gravity sector were determined by the reanalysis of short-range gravity experiments. Such experiments search for new physics at sidereal frequencies. They are not, however, designed to optimize the signal strength of a Lorentz invariance violation force; in fact the Lorentz violating signal is suppressed in the planar test mass geometry employed in those experiments. We describe a short-range torsion pendulum experiment with enhanced sensitivity to possible Lorentz violating signals. A periodic, striped test mass geometry is used to augment the signal. Careful arrangement of the phases of the striped patterns on opposite ends of the pendulum further enhances the signal while simultaneously suppressing the Newtonian background.
We study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earths sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2006-2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by about four orders of magnitude.