Do you want to publish a course? Click here

Hearing the signals of dark sectors with gravitational wave detectors

162   0   0.0 ( 0 )
 Added by Joerg Jaeckel
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by aLIGOs recent discovery of gravitational waves we discuss signatures of new physics that could be seen at ground and space-based interferometers. We show that a first order phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments, if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak scale. The source of gravitational waves in this case is associated with the dynamics of expanding and colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark sector domain walls, may generate a detectable signal already at aLIGO. Both -- bubble and domain wall -- scenarios are sourced by semi-classical configurations of a dark new physics sector. In the first case the gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in the early universe, while the second case corresponds to domain walls passing through the interferometer at present and is not related to gravitational waves. We find that aLIGO at its current sensitivity can detect smoking-gun signatures from domain wall interactions, while future proposed experiments including the fifth phase of aLIGO at design sensitivity can probe dark sector phase transitions.



rate research

Read More

68 - Alberto Salvio 2021
The relic gravitational wave background due to tensor linear perturbations generated during Higgs inflation is computed. Both the Standard Model and a well-motivated phenomenological completion (that accounts for all the experimentally confirmed evidence of new physics) are considered. We focus on critical Higgs inflation, which improves on the non-critical version and features an amplification of the tensor fluctuations. The latter property allows us to establish that future space-borne interferometers, such as DECIGO, BBO and ALIA, may detect the corresponding primordial gravitational waves.
We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured dark matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.
We study the spectrum of gravitational waves produced by a first order phase transition in a hidden sector that is colder than the visible sector. In this scenario, bubbles of the hidden sector vacuum can be nucleated through either thermal fluctuations or quantum tunnelling. If a cold hidden sector undergoes a thermally induced transition, the amplitude of the gravitational wave signal produced will be suppressed and its peak frequency shifted compared to if the hidden and visible sector temperatures were equal. This could lead to signals in a frequency range that would otherwise be ruled out by constraints from big bang nucleosynthesis. Alternatively, a sufficiently cold hidden sector could fail to undergo a thermal transition and subsequently transition through the nucleation of bubbles by quantum tunnelling. In this case the bubble walls might accelerate with completely negligible friction. The resulting gravitational wave spectrum has a characteristic frequency dependence, which may allow such cold hidden sectors to be distinguished from models in which the hidden and visible sector temperatures are similar. We compare our results to the sensitivity of the future gravitational wave experimental programme.
We discuss the prospects of gravitational lensing of gravitational waves (GWs) coming from core-collapse supernovae (CCSN). As the CCSN GW signal can only be detected from within our own Galaxy and the local group by current and upcoming ground-based GW detectors, we focus on microlensing. We introduce a new technique based on analysis of the power spectrum and association of peaks of the power spectrum with the peaks of the amplification factor to identify lensed signals. We validate our method by applying it on the CCSN-like mock signals lensed by a point mass lens. We find that the lensed and unlensed signal can be differentiated using the association of peaks by more than one sigma for lens masses larger than 150 solar masses. We also study the correlation integral between the power spectra and corresponding amplification factor. This statistical approach is able to differentiate between unlensed and lensed signals for lenses as small as 15 solar masses. Further, we demonstrate that this method can be used to estimate the mass of a lens in case the signal is lensed. The power spectrum based analysis is general and can be applied to any broad band signal and is especially useful for incoherent signals.
Fermion dark matter particles can aggregate to form extended dark matter structures via a first-order phase transition in which the particles get trapped in the false vacuum. We study Fermi balls created in a phase transition induced by a generic quartic thermal effective potential. We show that for Fermi balls of mass, $3times 10^{-12}M_odot lesssim M_{rm FB} lesssim 10^{-5}M_odot$, correlated observations of gravitational waves produced during the phase transition (at SKA/THEIA), and gravitational microlensing caused by Fermi balls (at Subaru-HSC), can be made.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا