No Arabic abstract
We introduce a stability criterion for quantum statistical ensembles describing macroscopic systems. An ensemble is called stable when a small number of local measurements cannot significantly modify the probability distribution of the total energy of the system. We apply this criterion to lattices of spins-1/2, thereby showing that the canonical ensemble is nearly stable, whereas statistical ensembles with much broader energy distributions are not stable. In the context of the foundations of quantum statistical physics, this result justifies the use of statistical ensembles with narrow energy distributions such as canonical or microcanonical ensembles.
We investigate different measures of stability of quantum statistical ensembles with respect to local measurements. We call a quantum statistical ensemble stable if a small number of local measurements cannot significantly modify the total-energy distribution representing the ensemble. First, we numerically calculate the evolution of the stability measure introduced in our previous work [Phys. Rev. E 94, 062106 (2016)] for an ensemble representing a mixture of two canonical ensembles with very different temperatures in a periodic chain of interacting spins-1/2. Second, we propose other possible stability measures and discuss their advantages and disadvantages. We also show that, for small system sizes available to numerical simulations of local measurements, finite-size effects are rather pronounced.
The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modelling of transport in mesoscopic systems, consists in using {it local} master equations containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of local master equations based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics.
The unitary dynamics of isolated quantum systems does not allow a pure state to thermalize. Because of that, if an isolated quantum system equilibrates, it will do so to the predictions of the so-called diagonal ensemble $rho_{DE}$. Building on the intuition provided by Jaynes maximum entropy principle, in this paper we present a novel technique to generate progressively better approximations to $rho_{DE}$. As an example, we write down a hierarchical set of ensembles which can be used to describe the equilibrium physics of small isolated quantum systems, going beyond the thermal ansatz of Gibbs ensembles.
Precise thermometry for quantum systems is important to the development of new technology, and understanding the ultimate limits to precision presents a fundamental challenge. It is well known that optimal thermometry requires projective measurements of the total energy of the sample. However, this is infeasible in even moderately-sized systems, where realistic energy measurements will necessarily involve some coarse graining. Here, we explore the precision limits for temperature estimation when only coarse-grained measurements are available. Utilizing tools from signal processing, we derive the structure of optimal coarse-grained measurements and find that good temperature estimates can generally be attained even with a small number of outcomes. We apply our results to many-body systems and nonequilibrium thermometry. For the former, we focus on interacting spin lattices, both at and away from criticality, and find that the Fisher-information scaling with system size is unchanged after coarse-graining. For the latter, we consider a probe of given dimension interacting with the sample, followed by a measurement of the probe. We derive an upper bound on arbitrary, nonequilibrium strategies for such probe-based thermometry and illustrate it for thermometry on a Bose-Einstein condensate using an atomic quantum-dot probe.
We investigate the effect of conditional null measurements on a quantum system and find a rich variety of behaviors. Specifically, quantum dynamics with a time independent $H$ in a finite dimensional Hilbert space are considered with repeated strong null measurements of a specified state. We discuss four generic behaviors that emerge in these monitored systems. The first arises in systems without symmetry, along with their associated degeneracies in the energy spectrum, and hence in the absence of dark states as well. In this case, a unique final state can be found which is determined by the largest eigenvalue of the survival operator, the non-unitary operator encoding both the unitary evolution between measurements and the measurement itself. For a three-level system, this is similar to the well known shelving effect. Secondly, for systems with built-in symmetry and correspondingly a degenerate energy spectrum, the null measurements dynamically select the degenerate energy levels, while the non-degenerate levels are effectively wiped out. Thirdly, in the absence of dark states, and for specific choices of parameters, two or more eigenvalues of the survival operator match in magnitude, and this leads to an oscillatory behavior controlled by the measurement rate and not solely by the energy levels. Finally, when the control parameters are tuned, such that the eigenvalues of the survival operator all coalesce to zero, one has exceptional points that corresponds to situations that violate the null measurement condition, making the conditional measurement process impossible.