No Arabic abstract
Precise thermometry for quantum systems is important to the development of new technology, and understanding the ultimate limits to precision presents a fundamental challenge. It is well known that optimal thermometry requires projective measurements of the total energy of the sample. However, this is infeasible in even moderately-sized systems, where realistic energy measurements will necessarily involve some coarse graining. Here, we explore the precision limits for temperature estimation when only coarse-grained measurements are available. Utilizing tools from signal processing, we derive the structure of optimal coarse-grained measurements and find that good temperature estimates can generally be attained even with a small number of outcomes. We apply our results to many-body systems and nonequilibrium thermometry. For the former, we focus on interacting spin lattices, both at and away from criticality, and find that the Fisher-information scaling with system size is unchanged after coarse-graining. For the latter, we consider a probe of given dimension interacting with the sample, followed by a measurement of the probe. We derive an upper bound on arbitrary, nonequilibrium strategies for such probe-based thermometry and illustrate it for thermometry on a Bose-Einstein condensate using an atomic quantum-dot probe.
One can think of some physical evolutions as being the emergent-effective result of a microscopic discrete model. Inspired by classical coarse-graining procedures, we provide a simple procedure to coarse-grain color-blind quantum cellular automata that follow Goldilocks rules. The procedure consists in (i) space-time grouping the quantum cellular automaton (QCA) in cells of size $N$; (ii) projecting the states of a cell onto its borders, connecting them with the fine dynamics; (iii) describing the overall dynamics by the border states, that we call signals; and (iv) constructing the coarse-grained dynamics for different sizes $N$ of the cells. A byproduct of this simple toy-model is a general discrete analog of the Stokes law. Moreover we prove that in the spacetime limit, the automaton converges to a Dirac free Hamiltonian. The QCA we introduce here can be implemented by present-day quantum platforms, such as Rydberg arrays, trapped ions, and superconducting qbits. We hope our study can pave the way to a richer understanding of those systems with limited resolution.
As the minituarization of electronic devices, which are sensitive to temperature, grows apace, sensing of temperature with ever smaller probes is more important than ever. Genuinely quantum mechanical schemes of thermometry are thus expected to be crucial to future technological progress. We propose a new method to measure the temperature of a bath using the weak measurement scheme with a finite dimensional probe. The precision offered by the present scheme not only shows similar qualitative features as the usual Quantum Fisher Information based thermometric protocols, but also allows for flexibility over setting the optimal thermometric window through judicious choice of post selection measurements.
We introduce a general framework for thermometry based on collisional models, where ancillas probe the temperature of the environment through an intermediary system. This allows for the generation of correlated ancillas even if they are initially independent. Using tools from parameter estimation theory, we show through a minimal qubit model that individual ancillas can already outperform the thermal Cramer-Rao bound. In addition, due to the steady-state nature of our model, when measured collectively the ancillas always exhibit superlinear scalings of the Fisher information. This means that even collective measurements on pairs of ancillas will already lead to an advantage. As we find in our qubit model, such a feature may be particularly valuable for weak system-ancilla interactions. Our approach sets forth the notion of metrology in a sequential interactions setting, and may inspire further advances in quantum thermometry.
We extend classical coarse-grained entropy, commonly used in many branches of physics, to the quantum realm. We find two coarse-grainings, one using measurements of local particle numbers and then total energy, and the second using local energy measurements, which lead to an entropy that is defined outside of equilibrium, is in accord with the thermodynamic entropy for equilibrium systems, and reaches the thermodynamic entropy in the long-time limit, even in genuinely isolated quantum systems. This answers the long-standing conceptual problem, as to which entropy is relevant for the formulation of the second thermodynamic law in closed quantum systems. This entropy could be in principle measured, especially now that experiments on such systems are becoming feasible.
Integral equation theory is applied to a coarse-grained model of water to study potential of mean force between hydrophobic solutes. Theory is shown to be in good agreement with the available simulation data for methane-methane and fullerene-fullerene potential of mean force in water; the potential of mean force is also decomposed into its entropic and enthalpic contributions. Mode coupling theory is employed to compute self-diffusion coefficient of water, as well as diffusion coefficient of a dilute hydrophobic solute; good agreement with molecular dynamics simulation results is found.