No Arabic abstract
Let $pi: X to Y$ be a morphism of projective varieties and suppose that $alpha$ is a pseudo-effective numerical cycle class satisfying $pi_*alpha = 0$. A conjecture of Debarre, Jiang, and Voisin predicts that $alpha$ is a limit of classes of effective cycles contracted by $pi$. We establish new cases of the conjecture for higher codimension cycles. In particular we prove a strong version when $X$ is a fourfold and $pi$ has relative dimension one.
Given a morphism between complex projective varieties, we make several conjectures on the relations between the set of pseudo-effective (co)homology classes which are annihilated by pushforward and the set of classes of varieties contracted by the morphism. We prove these conjectures for classes of curves or divisors. We also prove that one of these conjectures implies Grothendiecks generalized Hodge conjecture for varieties with Hodge coniveau at least 1.
We characterize a $k$-th accumulation point of pseudo-effective thresholds of $n$-dimensional varieties as certain invariant associates to a numerically trivial pair of an $(n-k)$-dimensional variety. This characterization is applied towards Fujitas log spectrum conjecture for large $k$.
This article concerns properties of mixed $ell$-adic complexes on varieties over finite fields, related to the action of the Frobenius automorphism. We establish a fiberwise criterion for the semisimplicity and Frobenius semisimplicity of the direct image complex under a proper morphism of varieties over a finite field. We conjecture that the direct image of the intersection complex on the domain is always semisimple and Frobenius semisimple; this conjecture would imply that a strong form of the decomposition theorem of Beilinson-Bernstein-Deligne-Gabber is valid over finite fields. We prove our conjecture for (generalized) convolution morphisms associated with partial affine flag varieties for split connected reductive groups over finite fields, and we prove allied Frobenius semisimplicity results for the intersection cohomology groups of twisted products of Schubert varieties. We offer two proofs for these results: one is based on the paving by affine spaces of the fibers of certain convolution morphisms, the other involves a new schematic theory of big cells adapted to partial affine flag varieties, and combines Delignes theory of weights with a suitable contracting $mathbb G_m$-action on those big cells. Both proofs rely on our general result that the intersection complex of the image of a proper map of varieties over a finite field is a direct summand of the direct image of the intersection complex of the domain. With suitable reformulations, the main results are valid over any algebraically closed ground field.
It goes back to Ahlfors that a real algebraic curve admits a real-fibered morphism to the projective line if and only if the real part of the curve disconnects its complex part. Inspired by this result, we are interested in characterising real algebraic varieties of dimension $n$ admitting real-fibered morphisms to the $n$-dimensional projective space. We present a criterion to classify real-fibered morphisms that arise as finite surjective linear projections from an embedded variety which relies on topological linking numbers. We address special attention to real algebraic surfaces. We classify all real-fibered morphisms from real del Pezzo surfaces to the projective plane and determine which such morphisms arise as the composition of a projective embedding with a linear projection. Furthermore, we give some insights in the case of real conic bundles.
Let K be an algebraically closed, complete non-Archimedean field. The purpose of this paper is to carefully study the extent to which finite morphisms of algebraic K-curves are controlled by certain combinatorial objects, called skeleta. A skeleton is a metric graph embedded in the Berkovich analytification of X. A skeleton has the natural structure of a metrized complex of curves. We prove that a finite morphism of K-curves gives rise to a finite harmonic morphism of a suitable choice of skeleta. We use this to give analytic proofs of stronger skeletonized