No Arabic abstract
This article concerns properties of mixed $ell$-adic complexes on varieties over finite fields, related to the action of the Frobenius automorphism. We establish a fiberwise criterion for the semisimplicity and Frobenius semisimplicity of the direct image complex under a proper morphism of varieties over a finite field. We conjecture that the direct image of the intersection complex on the domain is always semisimple and Frobenius semisimple; this conjecture would imply that a strong form of the decomposition theorem of Beilinson-Bernstein-Deligne-Gabber is valid over finite fields. We prove our conjecture for (generalized) convolution morphisms associated with partial affine flag varieties for split connected reductive groups over finite fields, and we prove allied Frobenius semisimplicity results for the intersection cohomology groups of twisted products of Schubert varieties. We offer two proofs for these results: one is based on the paving by affine spaces of the fibers of certain convolution morphisms, the other involves a new schematic theory of big cells adapted to partial affine flag varieties, and combines Delignes theory of weights with a suitable contracting $mathbb G_m$-action on those big cells. Both proofs rely on our general result that the intersection complex of the image of a proper map of varieties over a finite field is a direct summand of the direct image of the intersection complex of the domain. With suitable reformulations, the main results are valid over any algebraically closed ground field.
The classical Frobenius-Schur indicators for finite groups are character sums defined for any representation and any integer m greater or equal to 2. In the familiar case m=2, the Frobenius-Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bump and Ginzburg, building on earlier work of Mackey, have defin
Let g be a finite dimensional complex semisimple Lie algebra, and let V be a finite dimensional represenation of g. We give a closed formula for the mth Frobenius-Schur indicator, m>1, of V in representation-theoretic terms. We deduce that the indicators take integer values, and that for a large enough m, the mth indicator of V equals the dimension of the zero weight space of V. For the classical Lie algebras sl(n), so(2n), so(2n+1) and sp(2n), this is the case for m greater or equal to 2n-1, 4n-5, 4n-3 and 2n+1, respectively.
Classically, the exponent of a group is the least common multiple of the orders of its elements. This notion was generalized by Etingof and Gelaki to the context of Hopf algebras. Kashina, Sommerhauser and Zhu later observed that there is a strong connection between exponents and Frobenius-Schur indicators. In this paper, we introduce the notion of twisted exponents and show that there is a similar relationship between the twisted exponent and the twisted Frobenius-Schur indicators defined in previous work of the authors. In particular, we exhibit a new formula for the twisted Frobenius-Schur indicators and use it to prove periodicity and rationality statements for the twisted indicators.
In this paper, we explicitly prove that statistical manifolds, related to exponential families and with flat structure connection have a Frobenius manifold structure. This latter object, at the interplay of beautiful interactions between topology and quantum field theory, raises natural questions, concerning the existence of Gromov--Witten invariants for those statistical manifolds. We prove that an analog of Gromov--Witten invariants for those statistical manifolds (GWS) exists. Similarly to its original version, these new invariants have a geometric interpretation concerning intersection points of para-holomorphic curves. However, it also plays an important role in the learning process, since it determines whether a system has succeeded in learning or failed.
We prove a canonical bundle formula for generically finite morphisms in the setting of generalized pairs (with $mathbb{R}$-coefficients). This complements Filipazzis canonical bundle formula for morphisms with connected fibres. It is then applied to obtain a subadjunction formula for log canonical centers of generalized pairs. As another application, we show that the image of an anti-nef log canonical generalized pair has the structure of a numerically trivial log canonical generalized pair. This readily implies a result of Chen--Zhang. Along the way we prove that the Shokurov type convex sets for anti-nef log canonical divisors are indeed rational polyhedral sets.