Do you want to publish a course? Click here

Pseudo-effective classes and pushforwards

132   0   0.0 ( 0 )
 Added by Olivier Debarre
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Given a morphism between complex projective varieties, we make several conjectures on the relations between the set of pseudo-effective (co)homology classes which are annihilated by pushforward and the set of classes of varieties contracted by the morphism. We prove these conjectures for classes of curves or divisors. We also prove that one of these conjectures implies Grothendiecks generalized Hodge conjecture for varieties with Hodge coniveau at least 1.



rate research

Read More

Let $pi: X to Y$ be a morphism of projective varieties and suppose that $alpha$ is a pseudo-effective numerical cycle class satisfying $pi_*alpha = 0$. A conjecture of Debarre, Jiang, and Voisin predicts that $alpha$ is a limit of classes of effective cycles contracted by $pi$. We establish new cases of the conjecture for higher codimension cycles. In particular we prove a strong version when $X$ is a fourfold and $pi$ has relative dimension one.
74 - Jingjun Han , Zhan Li 2018
We characterize a $k$-th accumulation point of pseudo-effective thresholds of $n$-dimensional varieties as certain invariant associates to a numerically trivial pair of an $(n-k)$-dimensional variety. This characterization is applied towards Fujitas log spectrum conjecture for large $k$.
We show that the cobordism class of a polarization of Hodge module defines a natural transformation from the Grothendieck group of Hodge modules to the cobordism group of self-dual bounded complexes with real coefficients and constructible cohomology sheaves in a compatible way with pushforward by proper morphisms. This implies a new proof of the well-definedness of the natural transformation from the Grothendieck group of varieties over a given variety to the above cobordism group (with real coefficients). As a corollary, we get a slight extension of a conjecture of Brasselet, Schurmann and Yokura, showing that in the $bf Q$-homologically isolated singularity case, the homology $L$-class which is the specialization of the Hirzebruch class coincides with the intersection complex $L$-class defined by Goresky, MacPherson, and others if and only if the sum of the reduced Euler-Hodge signatures of the stalks of the shifted intersection complex vanishes. Here Hodge signature uses a polarization of Hodge structure, and it does not seem easy to define it by a purely topological method.
We prove that pseudo-Anosov mapping classes are generic with respect to certain notions of genericity reflecting that we are dealing with mapping classes.
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes of regular semisimple Hessenberg varieties in terms of Chern classes. In fact, we show that the cohomology class of each regular semisimple Hessenberg variety is the specialization of a certain double Schubert polynomial, giving a natural geometric interpretation to such specializations. We also decompose such classes in terms of the Schubert basis for the cohomology ring of the flag variety. The coefficients obtained are nonnegative, and we give closed combinatorial formulas for the coefficients in many cases. We introduce a closely related family of schemes called regular nilpotent Hessenberg schemes, and use our results to determine when such schemes are reduced.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا