No Arabic abstract
We present the last developments on the IVOA Provenance data model, mainly based on the W3C PROV concept. In the context of the Cherenkov astronomy, the data processing stages imply both assumptions and comparison to dedicated simulations. As a consequence, Provenance information is crucial to the end user in order to interpret the high level data products. The Cherenkov Telescope Array (CTA), currently in preparation, is thus a perfect test case for the development of an IVOA standard on Provenance information. We describe general use-cases for the computational Provenance in the CTA production pipeline and explore the proposed W3C notations like PROV-N formats, as well as Provenance access solutions.
Recently the International Virtual Observatory Alliance (IVOA) released a standard to structure provenance metadata, and several implementations are in development in order to capture, store, access and visualize the provenance of astronomy data products. This BoF will be focused on practical needs for provenance in astronomy. A growing number of projects express the requirement to propose FAIR data (Findable, Accessible, Interoperable and Reusable) and thus manage provenance information to ensure the quality, reliability and trustworthiness of this data. The concepts are in place, but now, applied specifications and practical tools are needed to answer concrete use cases. During this session we discussed which strategies are considered by projects (observatories or data providers) to capture provenance in their context and how a end-user might query the provenance information to enhance her/his data selection and retrieval. The objective was to identify the development of tools and formats now needed to make provenance more practical needed to increase provenance take-up in the astronomical domain.
For data-centric systems, provenance tracking is particularly important when the system is open and decentralised, such as the Web of Linked Data. In this paper, a concise but expressive calculus which models data updates is presented. The calculus is used to provide an operational semantics for a system where data and updates interact concurrently. The operational semantics of the calculus also tracks the provenance of data with respect to updates. This provides a new formal semantics extending provenance diagrams which takes into account the execution of processes in a concurrent setting. Moreover, a sound and complete model for the calculus based on ideals of series-parallel DAGs is provided. The notion of provenance introduced can be used as a subjective indicator of the quality of data in concurrent interacting systems.
The Photometry Data Model (PhotDM) standard describes photometry filters, photometric systems, magnitude systems, zero points and its interrelation with the other IVOA data models through a simple data model. Particular attention is given necessarily to optical photometry where specifications of magnitude systems and photometric zero points are required to convert photometric measurements into physical flux density units.
Database systems analyze queries to determine upfront which data is needed for answering them and use indexes and other physical design techniques to speed-up access to that data. However, for important classes of queries, e.g., HAVING and top-k queries, it is impossible to determine up-front what data is relevant. To overcome this limitation, we develop provenance-based data skipping (PBDS), a novel approach that generates provenance sketches to concisely encode what data is relevant for a query. Once a provenance sketch has been captured it is used to speed up subsequent queries. PBDS can exploit physical design artifacts such as indexes and zone maps. Our approach significantly improves performance for both disk-based and main-memory database systems.
Provenance is information about the origin, derivation, ownership, or history of an object. It has recently been studied extensively in scientific databases and other settings due to its importance in helping scientists judge data validity, quality and integrity. However, most models of provenance have been stated as ad hoc definitions motivated by informal concepts such as comes from, influences, produces, or depends on. These models lack clear formalizations describing in what sense the definitions capture these intuitive concepts. This makes it difficult to compare approaches, evaluate their effectiveness, or argue about their validity. We introduce provenance traces, a general form of provenance for the nested relational calculus (NRC), a core database query language. Provenance traces can be thought of as concrete data structures representing the operational semantics derivation of a computation; they are related to the traces that have been used in self-adjusting computation, but differ in important respects. We define a tracing operational semantics for NRC queries that produces both an ordinary result and a trace of the execution. We show that three pre-existing forms of provenance for the NRC can be extracted from provenance traces. Moreover, traces satisfy two semantic guarantees: consistency, meaning that the traces describe what actually happened during execution, and fidelity, meaning that the traces explain how the expression would behave if the input were changed. These guarantees are much stronger than those contemplated for previous approaches to provenance; thus, provenance traces provide a general semantic foundation for comparing and unifying models of provenance in databases.