Do you want to publish a course? Click here

Practical Provenance in Astronomy

86   0   0.0 ( 0 )
 Added by Mathieu Servillat
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently the International Virtual Observatory Alliance (IVOA) released a standard to structure provenance metadata, and several implementations are in development in order to capture, store, access and visualize the provenance of astronomy data products. This BoF will be focused on practical needs for provenance in astronomy. A growing number of projects express the requirement to propose FAIR data (Findable, Accessible, Interoperable and Reusable) and thus manage provenance information to ensure the quality, reliability and trustworthiness of this data. The concepts are in place, but now, applied specifications and practical tools are needed to answer concrete use cases. During this session we discussed which strategies are considered by projects (observatories or data providers) to capture provenance in their context and how a end-user might query the provenance information to enhance her/his data selection and retrieval. The objective was to identify the development of tools and formats now needed to make provenance more practical needed to increase provenance take-up in the astronomical domain.



rate research

Read More

We present the last developments on the IVOA Provenance data model, mainly based on the W3C PROV concept. In the context of the Cherenkov astronomy, the data processing stages imply both assumptions and comparison to dedicated simulations. As a consequence, Provenance information is crucial to the end user in order to interpret the high level data products. The Cherenkov Telescope Array (CTA), currently in preparation, is thus a perfect test case for the development of an IVOA standard on Provenance information. We describe general use-cases for the computational Provenance in the CTA production pipeline and explore the proposed W3C notations like PROV-N formats, as well as Provenance access solutions.
Astronomy is entering a new era of discovery, coincident with the establishment of new facilities for observation and simulation that will routinely generate petabytes of data. While an increasing reliance on automated data analysis is anticipated, a critical role will remain for visualization-based knowledge discovery. We have investigated scientific visualization applications in astronomy through an examination of the literature published during the last two decades. We identify the two most active fields for progress - visualization of large-N particle data and spectral data cubes - discuss open areas of research, and introduce a mapping between astronomical sources of data and data representations used in general purpose visualization tools. We discuss contributions using high performance computing architectures (e.g: distributed processing and GPUs), collaborative astronomy visualization, the use of workflow systems to store metadata about visualization parameters, and the use of advanced interaction devices. We examine a number of issues that may be limiting the spread of scientific visualization research in astronomy and identify six grand challenges for scientific visualization research in the Petascale Astronomy Era.
249 - Simon Vaughan 2013
Progress in astronomy comes from interpreting the signals encoded in the light received from distant objects: the distribution of light over the sky (images), over photon wavelength (spectrum), over polarization angle, and over time (usually called light curves by astronomers). In the time domain we see transient events such as supernovae, gamma-ray bursts, and other powerful explosions; we see periodic phenomena such as the orbits of planets around nearby stars, radio pulsars, and pulsations of stars in nearby galaxies; and persistent aperiodic variations (`noise) from powerful systems like accreting black holes. I review just a few of the recent and future challenges in the burgeoning area of Time Domain Astrophysics, with particular attention to persistently variable sources, the recovery of reliable noise power spectra from sparsely sampled time series, higher-order properties of accreting black holes, and time delays and correlations in multivariate time series.
144 - Joan R. Najita 2019
How should we invest our available resources to best sustain astronomys track record of discovery, established over the past few decades? Two strong hints come from (1) our history of astronomical discoveries and (2) literature citation patterns that reveal how discovery and development activities in science are strong functions of team size. These argue that progress in astronomy hinges on support for a diversity of research efforts in terms of team size, research tools and platforms, and investment strategies that encourage risk taking. These ideas also encourage us to examine the implications of the trend toward big team science and survey science in astronomy over the past few decades, and to reconsider the common assumption that progress in astronomy always means trading up to bigger apertures and facilities. Instead, the considerations above argue that we need a balanced set of investments in small- to large-scale initiatives and team sizes both large and small. Large teams tend to develop existing ideas, whereas small teams are more likely to fuel the future with disruptive discoveries. While large facilities are the value investments that are guaranteed to produce discoveries, smaller facilities are the growth stocks that are likely to deliver the biggest science bang per buck, sometimes with outsize returns. One way to foster the risk taking that fuels discovery is to increase observing opportunity, i.e., create more observing nights and facilitate the exploration of science-ready data.
A community meeting on the topic of Radio Astronomy in the LSST Era was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the time domain, the extent to which radio and visible wavelength observations are required to understand several classes of transients was stressed, but there are also classes of radio transients for which no visible wavelength counterpart is yet known, providing an opportunity for discovery. From the LSST perspective, the LSST is expected to generate as many as 1 million alerts nightly, which will require even more selective specification and identification of the classes and characteristics of transients that can warrant follow up, at radio or any wavelength. The LSST will also conduct a deep survey of the sky, producing a catalog expected to contain over 38 billion objects in it. Deep radio wavelength sky surveys will also be conducted on a comparable time scale, and radio and visible wavelength observations are part of the multi-wavelength approach needed to classify and understand these objects. Radio wavelengths are valuable because they are unaffected by dust obscuration and, for galaxies, contain contributions both from star formation and from active galactic nuclei. The workshop touched on several other topics, on which there was consensus including the placement of other LSST Deep Drilling Fields, inter-operability of software tools, and the challenge of filtering and exploiting the LSST data stream. There were also topics for which there was insufficient time for full discussion or for which no consensus was reached, which included the procedures for following up on LSST observations and the nature for future support of researchers desiring to use LSST data products.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا