Do you want to publish a course? Click here

A Provenance Tracking Model for Data Updates

150   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

For data-centric systems, provenance tracking is particularly important when the system is open and decentralised, such as the Web of Linked Data. In this paper, a concise but expressive calculus which models data updates is presented. The calculus is used to provide an operational semantics for a system where data and updates interact concurrently. The operational semantics of the calculus also tracks the provenance of data with respect to updates. This provides a new formal semantics extending provenance diagrams which takes into account the execution of processes in a concurrent setting. Moreover, a sound and complete model for the calculus based on ideals of series-parallel DAGs is provided. The notion of provenance introduced can be used as a subjective indicator of the quality of data in concurrent interacting systems.



rate research

Read More

We document the data transfer workflow, data transfer performance, and other aspects of staging approximately 56 terabytes of climate model output data from the distributed Coupled Model Intercomparison Project (CMIP5) archive to the National Energy Research Supercomputing Center (NERSC) at the Lawrence Berkeley National Laboratory required for tracking and characterizing extratropical storms, a phenomena of importance in the mid-latitudes. We present this analysis to illustrate the current challenges in assembling multi-model data sets at major computing facilities for large-scale studies of CMIP5 data. Because of the larger archive size of the upcoming CMIP6 phase of model intercomparison, we expect such data transfers to become of increasing importance, and perhaps of routine necessity. We find that data transfer rates using the ESGF are often slower than what is typically available to US residences and that there is significant room for improvement in the data transfer capabilities of the ESGF portal and data centers both in terms of workflow mechanics and in data transfer performance. We believe performance improvements of at least an order of magnitude are within technical reach using current best practices, as illustrated by the performance we achieved in transferring the complete raw data set between two high performance computing facilities. To achieve these performance improvements, we recommend: that current best practices (such as the Science DMZ model) be applied to the data servers and networks at ESGF data centers; that sufficient financial and human resources be devoted at the ESGF data centers for systems and network engineering tasks to support high performance data movement; and that performance metrics for data transfer between ESGF data centers and major computing facilities used for climate data analysis be established, regularly tested, and published.
The ever-growing availability of computing power and the sustained development of advanced computational methods have contributed much to recent scientific progress. These developments present new challenges driven by the sheer amount of calculations and data to manage. Next-generation exascale supercomputers will harden these challenges, such that automated and scalable solutions become crucial. In recent years, we have been developing AiiDA (http://www.aiida.net), a robust open-source high-throughput infrastructure addressing the challenges arising from the needs of automated workflow management and data provenance recording. Here, we introduce developments and capabilities required to reach sustained performance, with AiiDA supporting throughputs of tens of thousands processes/hour, while automatically preserving and storing the full data provenance in a relational database making it queryable and traversable, thus enabling high-performance data analytics. AiiDAs workflow language provides advanced automation, error handling features and a flexible plugin model to allow interfacing with any simulation software. The associated plugin registry enables seamless sharing of extensions, empowering a vibrant user community dedicated to making simulations more robust, user-friendly and reproducible.
Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed.
Provenance is information about the origin, derivation, ownership, or history of an object. It has recently been studied extensively in scientific databases and other settings due to its importance in helping scientists judge data validity, quality and integrity. However, most models of provenance have been stated as ad hoc definitions motivated by informal concepts such as comes from, influences, produces, or depends on. These models lack clear formalizations describing in what sense the definitions capture these intuitive concepts. This makes it difficult to compare approaches, evaluate their effectiveness, or argue about their validity. We introduce provenance traces, a general form of provenance for the nested relational calculus (NRC), a core database query language. Provenance traces can be thought of as concrete data structures representing the operational semantics derivation of a computation; they are related to the traces that have been used in self-adjusting computation, but differ in important respects. We define a tracing operational semantics for NRC queries that produces both an ordinary result and a trace of the execution. We show that three pre-existing forms of provenance for the NRC can be extracted from provenance traces. Moreover, traces satisfy two semantic guarantees: consistency, meaning that the traces describe what actually happened during execution, and fidelity, meaning that the traces explain how the expression would behave if the input were changed. These guarantees are much stronger than those contemplated for previous approaches to provenance; thus, provenance traces provide a general semantic foundation for comparing and unifying models of provenance in databases.
There has recently been a lot of ongoing research in the areas of fairness, bias and explainability of machine learning (ML) models due to the self-evident or regulatory requirements of various ML applications. We make the following observation: All of these approaches require a robust understanding of the relationship between ML models and the data used to train them. In this work, we introduce the ML provenance tracking problem: the fundamental idea is to automatically track which columns in a dataset have been used to derive the features/labels of an ML model. We discuss the challenges in capturing such information in the context of Python, the most common language used by data scientists. We then present Vamsa, a modular system that extracts provenance from Python scripts without requiring any changes to the users code. Using 26K real data science scripts, we verify the effectiveness of Vamsa in terms of coverage, and performance. We also evaluate Vamsas accuracy on a smaller subset of manually labeled data. Our analysis shows that Vamsas precision and recall range from 90.4% to 99.1% and its latency is in the order of milliseconds for average size scripts. Drawing from our experience in deploying ML models in production, we also present an example in which Vamsa helps automatically identify models that are affected by data corruption issues.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا