Do you want to publish a course? Click here

Maxima of Two Random Walks: Universal Statistics of Lead Changes

123   0   0.0 ( 0 )
 Added by Pavel Krapivsky
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate statistics of lead changes of the maxima of two discrete-time random walks in one dimension. We show that the average number of lead changes grows as $pi^{-1}ln(t)$ in the long-time limit. We present theoretical and numerical evidence that this asymptotic behavior is universal. Specifically, this behavior is independent of the jump distribution: the same asymptotic underlies standard Brownian motion and symmetric Levy flights. We also show that the probability to have at most n lead changes behaves as $t^{-1/4}[ln t]^n$ for Brownian motion and as $t^{-beta(mu)}[ln t]^n$ for symmetric Levy flights with index $mu$. The decay exponent $beta(mu)$ varies continuously with the Levy index when $0<mu<2$, while $beta=1/4$ for $mu>2$.



rate research

Read More

We consider one-dimensional discrete-time random walks (RWs) with arbitrary symmetric and continuous jump distributions $f(eta)$, including the case of Levy flights. We study the expected maximum ${mathbb E}[M_n]$ of bridge RWs, i.e., RWs starting and ending at the origin after $n$ steps. We obtain an exact analytical expression for ${mathbb E}[M_n]$ valid for any $n$ and jump distribution $f(eta)$, which we then analyze in the large $n$ limit up to second leading order term. For jump distributions whose Fourier transform behaves, for small $k$, as $hat f(k) sim 1 - |a, k|^mu$ with a Levy index $0<mu leq 2$ and an arbitrary length scale $a>0$, we find that, at leading order for large $n$, ${mathbb E}[M_n]sim a, h_1(mu), n^{1/mu}$. We obtain an explicit expression for the amplitude $h_1(mu)$ and find that it carries the signature of the bridge condition, being different from its counterpart for the free random walk. For $mu=2$, we find that the second leading order term is a constant, which, quite remarkably, is the same as its counterpart for the free RW. For generic $0< mu < 2$, this second leading order term is a growing function of $n$, which depends non-trivially on further details of $hat f (k)$, beyond the Levy index $mu$. Finally, we apply our results to compute the mean perimeter of the convex hull of the $2d$ Rouse polymer chain and of the $2d$ run-and-tumble particle, as well as to the computation of the survival probability in a bridge version of the well-known lamb-lion capture problem.
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a non-equilibrium stationary state and finite mean first arrival time. However, the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both power law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes the mean first arrival time in terms of the reset rate, the distance of the initial position to the target and the characteristic transport exponents.
The various types of generalized Cattaneo, called also telegraphers equation, are studied. We find conditions under which solutions of the equations considered so far can be recognized as probability distributions, textit{i.e.} are normalizable and non-negative on their domains. Analysis of the relevant mean squared displacements enables us to classify diffusion processes described by such obtained solutions and to identify them with either ordinary or anomalous super- or subdiffusion. To complete our study we analyse derivations of just considered examples the generalized Cattaneo equations using the continuous time random walk and the persistent random walk approaches.
68 - Loic Turban 2019
We study the random sequential adsorption of $k$-mers on the fully-connected lattice with $N=kn$ sites. The probability distribution $T_n(s,t)$ of the time $t$ needed to cover the lattice with $s$ $k$-mers is obtained using a generating function approach. In the low coverage scaling limit where $s,n,ttoinfty$ with $y=s/n^{1/2}={mathrm O}(1)$ the random variable $t-s$ follows a Poisson distribution with mean $ky^2/2$. In the intermediate coverage scaling limit, when both $s$ and $n-s$ are ${mathrm O}(n)$, the mean value and the variance of the covering time are growing as $n$ and the fluctuations are Gaussian. When full coverage is approached the scaling functions diverge, which is the signal of a new scaling behaviour. Indeed, when $u=n-s={mathrm O}(1)$, the mean value of the covering time grows as $n^k$ and the variance as $n^{2k}$, thus $t$ is strongly fluctuating and no longer self-averaging. In this scaling regime the fluctuations are governed, for each value of $k$, by a different extreme value distribution, indexed by $u$. Explicit results are obtained for monomers (generalized Gumbel distribution) and dimers.
In this work we study how a viral capsid can change conformation using techniques of Large Deviations Theory for stochastic differential equations. The viral capsid is a model of a complex system in which many units - the proteins forming the capsomers - interact by weak forces to form a structure with exceptional mechanical resistance. The destabilization of such a structure is interesting both per se, since it is related either to infection or maturation processes, and because it yields insights into the stability of complex structures in which the constitutive elements interact by weak attractive forces. We focus here on a simplified model of a dodecahederal viral capsid, and assume that the capsomers are rigid plaquettes with one degree of freedom each. We compute the most probable transition path from the closed capsid to the final configuration using minimum energy paths, and discuss the stability of intermediate states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا