No Arabic abstract
We calculate the SUSY-QCD corrections to the inclusive total cross sections of the associated production processes $ppto W^{pm}H^{mp}+X$ in the Minimal Supersymmetric Standard Model(MSSM) at the CERN Large Hadron Collider(LHC). The SUSY-QCD corrections can increase and decrease the total cross sections depending on the choice of the SUSY parameters. When $mu<0$ the SUSY-QCD corrections increase the leading-order (LO) total cross sections significantly for large tan$beta$ ($sim 40$), which can exceed 10% and have the opposite sign with respect to the QCD and the SUSY-EW corrections, and thus cancel with them to some extent. Moreover, we also investigate the effects of the SUSY-QCD on the differential distribution of cross sections in transverse momentum $p_T$ and rapidity Y of W-boson, and the invariant mass $M_{W^+H^-}$.
In this paper we calculate the technicolor correction to the production of a charged top pion in association with a W boson via bbar{b} annihilation at the CERN Large Hadron Collider in the context of the topcolor assisted technicolor model. We find that the cross section of pp rightarrow bbar{b} -> W^{pm}pi_t^{mp} at the tree level can reach a few hundred femtobarns for reasonable ranges of the parameters, roughly corresponding to the result of the process pp -> bbar{b} -> W^{pm}H^{mp} in the minimal supersymmetric standard model; the relative corrections arising from the one-loop diagrams are about a few percent to two dozen percent, and they will increase the cross section at the tree level. As a comparison, we also discuss the size of the hadron cross section via the other subprocess gg -> W^{pm}pi_t^{mp}.
We investigate the viability of observing charged Higgs bosons (H^+/-) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W-decay, within different scenarios of the Minimal Supersymmetric Standard Model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible Standard Model background from W+2 jets can be controlled by applying appropriate cuts and find that the size of a possible signal depends on the cuts needed to suppress QCD backgrounds and misidentifications. In the standard maximal mixing scenario of the MSSM we find a viable signal for large tan(beta) and intermediate H^+/- masses (~m_t) when using optimistic cuts whereas for more pessimistic ones we only find a viable signal for very large tan(beta) (>~50). We have also investigated a special class of MSSM scenarios with large mass-splittings among the heavy Higgs bosons where the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the CP-violating phases. Even so we find that the signal after cuts remains small except for small masses (~< m_t) with optimistic cuts. Finally, in all the scenarios we have investigated we have only found small CP-asymmetries.
We investigate the viability of observing charged Higgs bosons (H^pm) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W decay, within the Minimal Supersymmetric Standard Model. Performing a parton level study we show how the irreducible Standard Model background from W + 2 jets can be controlled by applying appropriate cuts. In the standard m_h^max scenario we find a viable signal for large tan beta and intermediate H^pm masses (~ m_t).
In this paper we calculate the production of a charged top pion in association with a W boson via gg fusion at the CERN Large Hadron Collider in the context of the topcolor assisted technicolor model. We find that, the total cross section of pp --> gg --> W^{pm}pi_t^{mp}, is several dozen femtobarns with reasonable values of the parameters, and the total cross section of pp --> W^{pm}pi_t^{mp} can reach a few hundred femtobarns when we consider the sum of the contributions of these two parton subprocesses gg --> W^{pm}pi_t^{mp} and bbar{b} --> W^{pm}pi_t^{mp}.
We report on the first computation of the next-to-next-to-leading order (NNLO) QCD corrections to $W^{pm}Z$ production in proton collisions. We consider both the inclusive production of on-shell $W^{pm}Z$ pairs at LHC energies and the total $W^{pm}Z$ rates including off-shell effects of the $W$ and $Z$ bosons. In the off-shell computation, the invariant mass of the lepton pairs from the $Z$ boson decay is required to be in a given mass window, and the results are compared with the corresponding measurements obtained by the ATLAS and CMS collaborations. The NNLO corrections range from 8% at $sqrt{s}$=7 TeV to 11% at $sqrt{s}$=14 TeV and significantly improve the agreement with the LHC data at $sqrt{s}$=7 and 8 TeV.