No Arabic abstract
Large holes in graphene membranes were recently shown to heal, either at room temperature during a low energy STEM experiment, or by annealing at high temperatures. However, the details of the healing mechanism remain unclear. We carried out fully atomistic reactive molecular dynamics simulations in order to address these mechanisms under different experimental conditions. Our results show that, if a carbon atom source is present, high temperatures can provide enough energy for the carbon atoms to overcome the potential energy barrier and to produce perfect reconstruction of the graphene hexagonal structure. At room temperature, this perfect healing is only possible if the heat effects of the electron beam from STEM experiment are explicitly taken into account. The reconstruction process of a perfect or near perfect graphene structure involves the formation of linear carbon chains, as well as rings containing 5, 6, 7 and 8 atoms with planar (Stone-Wales) and non-planar (lump like) structures. These results shed light on the healing mechanism of graphene when subjected to different experimental conditions. Additionally, the methodology presented here can be useful for investigating the tailoring and manipulations of other nano-structures.
We perform detailed magnetotransport studies on two-dimensional electron gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify the electron mobility limiting mechanisms in this increasingly important materials system. By analyzing data from 26 wafers with different heterostructure growth profiles we observe a strong correlation between the background oxygen concentration in the Si quantum well and the maximum mobility. The highest quality wafer supports a 2DEG with a mobility of 160,000 cm^2/Vs at a density 2.17 x 10^11/cm^2 and exhibits a metal-to-insulator transition at a critical density 0.46 x 10^11/cm^2. We extract a valley splitting of approximately 150 microeV at a magnetic field of 1.8 T. These results provide evidence that undoped Si/SiGe heterostructures are suitable for the fabrication of few-electron quantum dots.
We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers involved in the desorption and migration processes of a single H atom. These barriers, along with attempt rates and the energetics of H pairs, are used as input parameters in kinetic Monte Carlo simulations to study the time evolution of an initial random distribution of adsorbed H atoms. The simulations reveal that, at room temperature, H atoms occupy only one sublattice before they completely desorb or form clusters. This sublattice selectivity in the distribution of H atoms may last for sufficiently long periods of time upon lowering the temperature down to 0 C. The final fate of the H atoms, namely, desorption or cluster formation, depends on the actual relative values of the activation barriers which can be tuned by doping. In some cases a sublattice selectivity can be obtained for periods of time experimentally relevant even at room temperature. This result shows the possibility for observation and applications of the ferromagnetic state associated with such distribution.
Graphene with high carrier mobility mu is required both for graphene-based electronic devices and for the investigation of the fundamental properties of graphenes Dirac fermions. It is largely accepted that the mobility-limiting factor in graphene is the Coulomb scattering off of charged impurities that reside either on graphene or in the underlying substrate. This is true both for traditional graphene devices on SiO2 substrates and possibly for the recently reported high-mobility suspended and supported devices. An attractive approach to reduce such scattering is to place graphene in an environment with high static dielectric constant kappa that would effectively screen the electric field due to the impurities. However, experiments so far report only a modest effect of high-kappa environment on mobility. Here, we investigate the effect of the dielectric environment of graphene by studying electrical transport in multi-terminal graphene devices that are suspended in liquids with kappa ranging from 1.9 to 33. For non-polar liquids (kappa <5) we observe a rapid increase of mu with kappa and report a record room-temperature mobility as large as ~60,000 cm2/Vs for graphene devices in anisole (kappa=4.3), while in polar liquids (kappa >18) we observe a drastic drop in mobility. We demonstrate that non-polar liquids enhance mobility by screening charged impurities adsorbed on graphene, while charged ions in polar liquids cause the observed mobility suppression. Furthermore, using molecular dynamics simulation we establish that scattering by out-of-plane flexural phonons, a dominant scattering mechanism in suspended graphene in vacuum at room temperature, is suppressed by the presence of liquids. We expect that our findings may provide avenues to control and reduce carrier scattering in future graphene-based electronic devices.
Healing of a hole in a carbon nanotube under electron irradiation in HRTEM at room temperature is demonstrated using molecular dynamics simulations with the CompuTEM algorithm. Formation of an amorphous patch is observed in all simulation runs. The amorphous patch is formed in the absence of external carbon adatoms only via reconstruction of the carbon bond network. It consists mainly of 5-, 6- and 7-membered rings and causes a small bottleneck. In addition, further growth of the initial amorphous patch under electron irradiation takes place. Two-coordinated atoms are found to play a crucial role in the latter process, analogous to autocatalisys of rearrangements of rings in fullerenes. The principal rearrangements in the presence of two-coordinated atoms can be described as generalized sp-defect migration: a bond is broken between two three-coordinated atoms and one of them forms a new bond with a nearby two-coordinated atom. If the new and former two-coordinated atoms are not bonded, the reaction leads both to displacement of the sp defect and changes in rings of the sp$^2$ carbon structure. Migration by hopping of two-coordinated atoms and other reactions involving simultaneous breakage of two bonds are also detected but much rarely. Long-living two-coordinated atoms in the patch structure and related fast growth of the patch are observed in more than half of the simulation runs. Since the amorphous patch and bottleneck affect the electronic properties of the nanotube, such nanotubes can be perspective for nanoelectronic applications.
Bottom-up prepared carbon nanostructures appear as promising platforms for future carbon-based nanoelectronics, due to their atomically precise and versatile structure. An important breakthrough is the recent preparation of nanoporous graphene (NPG) as an ordered covalent array of graphene nanoribbons (GNRs). Within NPG, the GNRs may be thought of as 1D electronic nanochannels through which electrons preferentially move, highlighting NPGs potential for carbon nanocircuitry. However, the {pi}-conjugated bonds bridging the GNRs give rise to electronic cross-talk between the individual 1D channels, leading to spatially dispersing electronic currents. Here, we propose a chemical design of the bridges resulting in destructive quantum interference, which blocks the cross-talk between GNRs in NPG, electronically isolating them. Our multiscale calculations reveal that injected currents can remain confined within a single, 0.7 nm wide, GNR channel for distances as long as 100 nm. The concepts developed in this work thus provide an important ingredient for the quantum design of future carbon nanocircuitry.