Do you want to publish a course? Click here

Quantum interference engineering of nanoporous graphene for carbon nanocircuitry

200   0   0.0 ( 0 )
 Added by Gaetano Calogero
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bottom-up prepared carbon nanostructures appear as promising platforms for future carbon-based nanoelectronics, due to their atomically precise and versatile structure. An important breakthrough is the recent preparation of nanoporous graphene (NPG) as an ordered covalent array of graphene nanoribbons (GNRs). Within NPG, the GNRs may be thought of as 1D electronic nanochannels through which electrons preferentially move, highlighting NPGs potential for carbon nanocircuitry. However, the {pi}-conjugated bonds bridging the GNRs give rise to electronic cross-talk between the individual 1D channels, leading to spatially dispersing electronic currents. Here, we propose a chemical design of the bridges resulting in destructive quantum interference, which blocks the cross-talk between GNRs in NPG, electronically isolating them. Our multiscale calculations reveal that injected currents can remain confined within a single, 0.7 nm wide, GNR channel for distances as long as 100 nm. The concepts developed in this work thus provide an important ingredient for the quantum design of future carbon nanocircuitry.



rate research

Read More

Designing platforms to control phase-coherence and interference of electron waves is a cornerstone for future quantum electronics, computing or sensing. Nanoporous graphene (NPG) consisting of linked graphene nanoribbons has recently been fabricated using molecular precursors and bottom-up assembly [Moreno et al., Science 360, 199 (2018)] opening an avenue for controlling the electronic current in a two-dimensional material. By simulating electron transport in real-sized NPG samples we predict that electron waves injected from the tip of a scanning tunneling microscope (STM) behave similarly to photons in coupled waveguides, displaying a Talbot interference pattern. We link the origins of this effect to the band structure of the NPG and further demonstrate how this pattern may be mapped out by a second STM probe. We enable atomistic parameter-free calculations beyond the 100 nm scale by developing a new multi-scale method where first-principles density functional theory regions are seamlessly embedded into a large-scale tight-binding.
We report the first experimental study of the quantum interference correction to the conductivity of bilayer graphene. Low-field, positive magnetoconductivity due to the weak localisation effect is investigated at different carrier densities, including those around the electroneutrality region. Unlike conventional 2D systems, weak localisation in bilayer graphene is affected by elastic scattering processes such as intervalley scattering. Analysis of the dephasing determined from the magnetoconductivity is complemented by a study of the field- and density-dependent fluctuations of the conductance. Good agreement in the value of the coherence length is found between these two studies.
Surfaces are at the frontier of every known solid. They provide versatile supports for functional nanostructures and mediate essential physicochemical processes. Being intimately related with 2D materials, interfaces and atomically thin films often feature distinct electronic states with respect to the bulk, which are key for many relevant properties, such as catalytic activity, interfacial charge-transfer, or crystal growth mechanisms. Of particular interest is reducing the surface electrons dimensionality and spread with atomic precision, to induce novel quantum properties via lateral scattering and confinement. Both atomic manipulation and supramolecular principles provide access to custom-designed molecular superlattices, which tailor the surface electronic landscape and influence fundamental chemical and physical properties at the nanoscale. Herein, we review the confinement of surface state electrons focusing on their interaction with molecule-based scaffolds created by molecular manipulation and self-assembly protocols under ultrahigh vacuum conditions. Starting from the quasi-free 2D electron gas present at the (111)-terminated surface planes of noble metals, we illustrate the enhanced molecule-based structural complexity and versatility compared to simple atoms. We survey low-dimensional confining structures in the form of artificial lattices, molecular nanogratings or quantum dot arrays, which are constructed upon appropriate choice of their building constituents. Whenever the realized (metal-)organic networks exhibit long-range order, modified surface band structures with characteristic features emerge, revealing intriguing physical properties, such as discretization, quantum coupling or energy and effective mass renormalization. Such collective electronic states can be additionally modified by positioning guest species at the voids of open nanoarchitectures [...].
Twist-engineering of the electronic structure of van-der-Waals layered materials relies predominantly on band hybridization between layers. Band-edge states in transition-metal-dichalcogenide semiconductors are localized around the metal atoms at the center of the three-atom layer and are therefore not particularly susceptible to twisting. Here, we report that high-lying excitons in bilayer WSe2 can be tuned over 235 meV by twisting, with a twist-angle susceptibility of 8.1 meV/{deg}, an order of magnitude larger than that of the band-edge A-exciton. This tunability arises because the electronic states associated with upper conduction bands delocalize into the chalcogenide atoms. The effect gives control over excitonic quantum interference, revealed in selective activation and deactivation of electromagnetically induced transparency (EIT) in second-harmonic generation. Such a degree of freedom does not exist in conventional dilute atomic-gas systems, where EIT was originally established, and allows us to shape the frequency dependence, i.e. the dispersion, of the optical nonlinearity.
Topological insulators (TIs) are an emerging class of materials that host highly robust in-gap surface/interface states while maintaining an insulating bulk. While most notable scientific advancements in this field have been focused on TIs and related topological crystalline insulators in 2D and 3D, more recent theoretical work has predicted the existence of 1D symmetry-protected topological phases in graphene nanoribbons (GNRs). The topological phase of these laterally-confined, semiconducting strips of graphene is determined by their width, edge shape, and the terminating unit cell, and is characterized by a Z2 invariant (similar to 1D solitonic systems). Interfaces between topologically distinct GNRs characterized by different Z2 are predicted to support half-filled in-gap localized electronic states which can, in principle, be utilized as a tool for material engineering. Here we present the rational design and experimental realization of a topologically-engineered GNR superlattice that hosts a 1D array of such states, thus generating otherwise inaccessible electronic structure. This strategy also enables new end states to be engineered directly into the termini of the 1D GNR superlattice. Atomically-precise topological GNR superlattices were synthesized from molecular precursors on a Au(111) surface under ultra-high vacuum (UHV) conditions and characterized by low temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Our experimental results and first-principles calculations reveal that the frontier band structure of these GNR superlattices is defined purely by the coupling between adjacent topological interface states. This novel manifestation of 1D topological phases presents an entirely new route to band engineering in 1D materials based on precise control of their electronic topology, and is a promising platform for future studies of 1D quantum spin physics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا