Do you want to publish a course? Click here

Universal entanglement spectra in critical spin chains

108   0   0.0 ( 0 )
 Added by Rex Lundgren
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We advocate that in critical spin chains, and possibly in a larger class of 1D critical models, a gap in the momentum-space entanglement spectrum separates the universal part of the spectrum, which is determined by the associated conformal field theory, from the non-universal part, which is specific to the model. To this end, we provide affirmative evidence from multicritical spin chains with low energy sectors described by the SU(2)$_2$ or the SU(3)$_1$ Wess-Zumino-Witten model.



rate research

Read More

We present a study of the scaling behavior of the R{e}nyi entanglement entropy (REE) in SU($N$) spin chain Hamiltonians, in which all the spins transform under the fundamental representation. These SU($N$) spin chains are known to be quantum critical and described by a well known Wess-Zumino-Witten (WZW) non-linear sigma model in the continuum limit. Numerical results from our lattice Hamiltonian are obtained using stochastic series expansion (SSE) quantum Monte Carlo for both closed and open boundary conditions. As expected for this 1D critical system, the REE shows a logarithmic dependence on the subsystem size with a prefector given by the central charge of the SU($N$) WZW model. We study in detail the sub-leading oscillatory terms in the REE under both periodic and open boundaries. Each oscillatory term is associated with a WZW field and decays as a power law with an exponent proportional to the scaling dimension of the corresponding field. We find that the use of periodic boundaries (where oscillations are less prominent) allows for a better estimate of the central charge, while using open boundaries allows for a better estimate of the scaling dimensions. For completeness we also present numerical data on the thermal R{e}nyi entropy which equally allows for extraction of the central charge.
The DMRG method is applied to integrable models of antiferromagnetic spin chains for fundamental and higher representations of SU(2), SU(3), and SU(4). From the low energy spectrum and the entanglement entropy, we compute the central charge and the primary field scaling dimensions. These parameters allow us to identify uniquely the Wess-Zumino-Witten models capturing the low energy sectors of the models we consider.
We analyze the phase diagram of the exact ground state (GS) of spin-$s$ chains with ferromagnetic $XXZ$ couplings under $n$-alternating field configurations, i.e, sparse alternating fields having nodes at $n-1$ contiguous sites. It is shown that such systems can exhibit a non-trivial magnetic behavior, which can differ significantly from that of the standard ($n=1$) alternating case and enable mechanisms for controlling their magnetic and entanglement properties. The boundary in field space of the fully aligned phase can be determined analytically $forall,n$, and shows that it becomes reachable only above a threshold value of the coupling anisotropy $J_z/J$, which depends on $n$ but is independent of the system size. Below this value the maximum attainable magnetization becomes much smaller. We then show that the GS can exhibit significant magnetization plateaus, persistent for large systems, at which the magnetization per site $m$ obeys the quantization rule $2n(s-m)=integer$, consistent with the Oshikawa, Yamanaka and Affleck (OYA) criterion. We also identify the emergence of field induced spin polymerization, which explains the presence of such plateaus. Entanglement and field induced frustration effects are also analyzed.
We introduce a family of inhomogeneous XX spin chains whose squared couplings are a polynomial of degree at most four in the site index. We show how to obtain an asymptotic approximation for the Renyi entanglement entropy of all such chains in a constant magnetic field at half filling by exploiting their connection with the conformal field theory of a massless Dirac fermion in a suitably curved static background. We study the above approximation for three particular chains in the family, two of them related to well-known quasi-exactly solvable quantum models on the line and the third one to classical Krawtchouk polynomials, finding an excellent agreement with the exact value obtained numerically when the Renyi parameter $alpha$ is less than one. When $alphage1$ we find parity oscillations, as expected from the homogeneous case, and show that they are very accurately reproduced by a modification of the Fagotti-Calabrese formula. We have also analyzed the asymptotic behavior of the Renyi entanglement entropy in the non-standard situation of arbitrary filling and/or inhomogeneous magnetic field. Our numerical results show that in this case a block of spins at each end of the chain becomes disentangled from the rest. Moreover, the asymptotic approximation for the case of half filling and constant magnetic field, when suitably rescaled to the region of non-vanishing entropy, provides a rough approximation to the entanglement entropy also in this general case.
The entanglement entropy (EE) can measure the entanglement between a spatial subregion and its complement, which provides key information about quantum states. Here, rather than focusing on specific regions, we study how the entanglement entropy changes with small deformations of the entangling surface. This leads to the notion of entanglement susceptibilities. These relate the variation of the EE to the geometric variation of the subregion. We determine the form of the leading entanglement susceptibilities for a large class of scale invariant states, such as groundstates of conformal field theories, and systems with Lifshitz scaling, which includes fixed points governed by disorder. We then use the susceptibilities to derive the universal contributions that arise due to non-smooth features in the entangling surface: corners in 2d, as well as cones and trihedral vertices in 3d. We finally discuss the generalization to Renyi entropies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا