No Arabic abstract
The entanglement entropy (EE) can measure the entanglement between a spatial subregion and its complement, which provides key information about quantum states. Here, rather than focusing on specific regions, we study how the entanglement entropy changes with small deformations of the entangling surface. This leads to the notion of entanglement susceptibilities. These relate the variation of the EE to the geometric variation of the subregion. We determine the form of the leading entanglement susceptibilities for a large class of scale invariant states, such as groundstates of conformal field theories, and systems with Lifshitz scaling, which includes fixed points governed by disorder. We then use the susceptibilities to derive the universal contributions that arise due to non-smooth features in the entangling surface: corners in 2d, as well as cones and trihedral vertices in 3d. We finally discuss the generalization to Renyi entropies.
The Renyi entanglement entropy in quantum many-body systems can be viewed as the difference in free energy between partition functions with different trace topologies. We introduce an external field $lambda$ that controls the partition function topology, allowing us to define a notion of nonequilibrium work as $lambda$ is varied smoothly. Nonequilibrium fluctuation theorems of the work provide us with statistically exact estimates of the Renyi entanglement entropy. This framework also naturally leads to the idea of using quench functions with spatially smooth profiles, providing us a way to average over lattice scale features of the entanglement entropy while preserving long distance universal information. We use these ideas to extract universal information from quantum Monte Carlo simulations of SU(N) spin models in one and two dimensions. The vast gain in efficiency of this method allows us to access unprecedented system sizes up to 192 x 96 spins for the square lattice Heisenberg antiferromagnet.
We study the growth of entanglement in quantum systems with a conserved quantity exhibiting diffusive transport, focusing on how initial inhomogeneities are imprinted on the entropy. We propose a simple effective model, which generalizes the minimal cut picture of textit{Jonay et al.} in such a way that the `line tension of the cut depends on the local entropy density. In the case of noisy dynamics, this is described by a Kardar-Parisi-Zhang (KPZ) equation coupled to a diffusing field. We investigate the resulting dynamics and find that initial inhomogeneities of the conserved charge give rise to features in the entanglement profile, whose width and height both grow in time as $proptosqrt{t}$. In particular, for a domain wall quench, diffusion restricts entanglement growth to be $S_text{vN} lesssim sqrt{t}$. We find that for charge density wave initial states, these features in the entanglement profile are present even after the charge density has equilibrated. Our conclusions are supported by numerical results on random circuits and deterministic spin chains.
Quantum field theories have a rich structure in the presence of boundaries. We study the groundstates of conformal field theories (CFTs) and Lifshitz field theories in the presence of a boundary through the lens of the entanglement entropy. For a family of theories in general dimensions, we relate the universal terms in the entanglement entropy of the bulk theory with the corresponding terms for the theory with a boundary. This relation imposes a condition on certain boundary central charges. For example, in 2 + 1 dimensions, we show that the corner-induced logarithmic terms of free CFTs and certain Lifshitz theories are simply related to those that arise when the corner touches the boundary. We test our findings on the lattice, including a numerical implementation of Neumann boundary conditions. We also propose an ansatz, the boundary Extensive Mutual Information model, for a CFT with a boundary whose entanglement entropy is purely geometrical. This model shows the same bulk-boundary connection as Dirac fermions and certain supersymmetric CFTs that have a holographic dual. Finally, we discuss how our results can be generalized to all dimensions as well as to massive quantum field theories.
We study the quantum entanglement structure of integer quantum Hall states via the reduced density matrix of spatial subregions. In particular, we examine the eigenstates, spectrum and entanglement entropy (EE) of the density matrix for various ground and excited states, with or without mass anisotropy. We focus on an important class of regions that contain sharp corners or cusps, leading to a geometric angle-dependent contribution to the EE. We unravel surprising relations by comparing this corner term at different fillings. We further find that the corner term, when properly normalized, has nearly the same angle dependence as numerous conformal field theories (CFTs) in two spatial dimensions, which hints at a broader structure. In fact, the Hall corner term is found to obey bounds that were previously obtained for CFTs. In addition, the low-lying entanglement spectrum and the corresponding eigenfunctions reveal excitations localized near corners. Finally, we present an outlook for fractional quantum Hall states.
We would like to put the area law -- believed to by obeyed by entanglement entropies in the ground state of a local field theory -- to scrutiny in the presence of non-perturbative effects. We study instanton corrections to entanglement entropy in various models whose instanton effects are well understood, including $U(1)$ gauge theory in 2+1 dimensions and false vacuum decay in $phi^4$ theory, and we demonstrate that the area law is indeed obeyed in these models. We also perform numerical computations for toy wavefunctions mimicking the theta vacuum of the (1+1)-dimensional Schwinger model. Our results indicate that such superpositions exhibit no more violation of the area law than the logarithmic behavior of a single Fermi surface.