Do you want to publish a course? Click here

Nuclear structure of 140Te with N = 88: Structural symmetry and asymmetry in Te isotopes with respect to the double-shell closure Z = 50 and N = 82

82   0   0.0 ( 0 )
 Added by Changbum Moon
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We study for the first time the internal structure of 140Te through the beta-delayed gamma-ray spectroscopy of 140Sb. The very neutron-rich 140Sb, Z = 51 and N = 89, ions were produced by the in-flight fission of 238U beam on a 9Be target at 345 MeV per nucleon at the Radioactive Ion Beam Factory, RIKEN. The half-life and spin-parity of 140Sb are reported as 124(30) ms and (4-), respectively. In addition to the excited states of 140Te produced by the beta-decay branch, the beta-delayed one-neutron and two-neutron emission branches were also established. By identifying the first 2+ and 4+ excited states of 140Te, we found that Te isotopes persist their vibrator character with E(4+)/E(2+) = 2. We discuss the distinctive features manifest in this region, such as valence neutron symmetry and asymmetry, revealed in pairs of isotopes with the same neutron holes and particles with respect to N = 82.



rate research

Read More

We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}$Cd offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}$Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}$Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group.
130 - H. Wang , N. Aoi , S. Takeuchi 2013
The neutron-rich, even-even 122,124,126Pd isotopes has been studied via in-beam gamma-ray spectroscopy at the RIKEN Radioactive Isotope Beam Factory. Excited states at 499(9), 590(11), and 686(17) keV were found in the three isotopes, which we assign to the respective 2+ -> 0+ decays. In addition, a candidate for the 4+ state at 1164(20) keV was observed in 122Pd. The resulting Ex(2+) systematics are essentially similar to those of the Xe (Z=54) isotopic chain and theoretical prediction by IBM-2, suggesting no serious shell quenching in the Pd isotopes in the vicinity of N=82.
We have performed microscopic distorted-wave Born approximation (DWBA) calculations of differential cross sections for the two reactions 136Sn(p,t)134Sn and 134Sn(t,p)136Sn, which are within reach of near-future experiments with radioactive ion beams. We have described the initial and final nuclear states in terms of the shell model, employing a realistic low-momentum two-body effective interaction derived from the CD-Bonn nucleon-nucleon potential that has already proved quite successful in describing the available low-energy energy spectrum of 134Sn. We discuss the main features of the predicted cross sections for the population of the low-lying yrast states in the two nuclei considered.
Low-lying excited states in the $N=32$ isotope $^{50}$Ar were investigated by in-beam $gamma$-ray spectroscopy following proton- and neutron-knockout, multi-nucleon removal, and proton inelastic scattering at the RIKEN Radioactive Isotope Beam Factory. The energies of the two previously reported transitions have been confirmed, and five additional states are presented for the first time, including a candidate for a 3$^-$ state. The level scheme built using $gammagamma$ coincidences was compared to shell-model calculations in the $sd-pf$ model space, and to ab initio predictions based on chiral two- and three-nucleon interactions. Theoretical proton- and neutron-knockout cross sections suggest that two of the new transitions correspond to $2^+$ states, while the previously proposed $4^+$ state could also correspond to a $2^+$ state.
The single-particle structure of the $N=27$ isotones provides insights into the shell evolution of neutron-rich nuclei from the doubly-magic $^{48}$Ca toward the drip line. $^{43}$S was studied employing the one-neutron knockout reaction from a radioactive $^{44}$S beam. Using a combination of prompt and delayed $gamma$-ray spectroscopy the level structure of $^{43}$S was clarified. Momentum distributions were analyzed and allowed for spin and parity assignments. The deduced spectroscopic factors show that the $^{44}$S ground-state configuration has a strong intruder component. The results were confronted with shell model calculations using two effective interactions. General agreement was found between the calculations, but strong population of states originating from the removal of neutrons from the $2p_{3/2}$ orbital in the experiment indicates that the breakdown of the $N=28$ magic number is more rapid than the theoretical calculations suggest.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا