Do you want to publish a course? Click here

Shell structure of $^{43}$S and collapse of the $N=28$ shell closure

97   0   0.0 ( 0 )
 Added by Kathrin Wimmer
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The single-particle structure of the $N=27$ isotones provides insights into the shell evolution of neutron-rich nuclei from the doubly-magic $^{48}$Ca toward the drip line. $^{43}$S was studied employing the one-neutron knockout reaction from a radioactive $^{44}$S beam. Using a combination of prompt and delayed $gamma$-ray spectroscopy the level structure of $^{43}$S was clarified. Momentum distributions were analyzed and allowed for spin and parity assignments. The deduced spectroscopic factors show that the $^{44}$S ground-state configuration has a strong intruder component. The results were confronted with shell model calculations using two effective interactions. General agreement was found between the calculations, but strong population of states originating from the removal of neutrons from the $2p_{3/2}$ orbital in the experiment indicates that the breakdown of the $N=28$ magic number is more rapid than the theoretical calculations suggest.



rate research

Read More

455 - B. Bastin , S. Grevy , D. Sohler 2007
The energies of the excited states in very neutron-rich $^{42}$Si and $^{41,43}$P have been measured using in-beam $gamma$-ray spectroscopy from the fragmentation of secondary beams of $^{42,44}$S at 39 A.MeV. The low 2$^+$ energy of $^{42}$Si, 770(19) keV, together with the level schemes of $^{41,43}$P provide evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that $^{42}$Si is best described as a well deformed oblate rotor.
Measurements of the N=28 isotones 42Si, 43P and 44S using one- and two-proton knockout reactions from the radioactive beam nuclei 44S and 46Ar are reported. The knockout reaction cross sections for populating 42Si and 43P and a 184 keV gamma-ray observed in 43P establish that the d_{3/2} and s_{1/2} proton orbits are nearly degenerate in these nuclei and that there is a substantial Z=14 subshell closure separating these two orbits from the d_{5/2} orbit. The increase in the inclusive two-proton knockout cross section from 42Si to 44S demonstrates the importance of the availability of valence protons for determining the cross section. New calculations of the two-proton knockout reactions that include diffractive effects are presented. In addition, it is proposed that a search for the d_{5/2} proton strength in 43P via a higher statistics one-proton knockout experiment could help determine the size of the Z=14 closure.
Excited states of the neutron-rich isotopes $^{42,44}$S and $^{41,43}$P have been studied via inverse-kinematics proton scattering from a liquid hydrogen target, using the GRETINA $gamma$-ray tracking array to extract inelastic scattering cross sections. Deformation lengths of the $2^+_1$ excitations in $^{42,44}$S have been determined and, when combined with deformation lengths determined with electromagnetic probes, yield the ratio of neutron-to-proton matrix elements $M_n/M_p$ for the $2^+_1$ excitations in these nuclei. The present results for $^{41,43}$P$(p,p)$ are used to compare two shell model interactions, SDPF-U and SDPF-MU. As in a recent study of $^{42}$Si, the present results on $^{41,43}$P favor the SDPF-MU interaction.
125 - O. Sorlin 2012
The evolution of the N=28 shell closure is investigated far from stability. Using the latest results obtained from various experimental techniques, we discuss the main properties of the N=28 isotones, as well as those of the N=27 and N=29 isotones. Experimental results are confronted to various theoretical predictions. These studies pinpoint the effects of several terms of the nucleon-nucleon interaction, such as the central, the spin-orbit, the tensor and the three-body force components, to account for the modification of the N=28 shell gap and spin-orbit splittings. Analogies between the evolution of the N=28 shell closure and other magic numbers originating from the spin-orbit interaction are proposed (N=14,50, 82 and 90). More generally, questions related to the evolution of nuclear forces towards the drip-line, in bubble nuclei, and for nuclei involved in the r-process nucleosynthesis are proposed and discussed.
The first investigation of the single-particle structure of the bound states of 17C, via the d(16C, p) transfer reaction, has been undertaken. The measured angular distributions confirm the spin-parity assignments of 1/2+ and 5/2+ for the excited states located at 217 and 335 keV, respectively. The spectroscopic factors deduced for these states exhibit a marked single-particle character, in agreement with shell model and particle-core model calculations, and combined with their near degeneracy in energy provide clear evidence for the absence of the N = 14 sub-shell closure. The very small spectroscopic factor found for the 3/2+ ground state is consistent with theoretical predictions and indicates that the { u}1d3/2 strength is carried by unbound states. With a dominant l = 0 valence neutron configuration and a very low separation energy, the 1/2+ excited state is a one-neutron halo candidate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا