Do you want to publish a course? Click here

Correlations between compositions and orbits established by the giant impact era of planet formation

58   0   0.0 ( 0 )
 Added by Rebekah Dawson
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The giant impact phase of terrestrial planet formation establishes connections between super-Earths orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N-body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surface density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings, larger eccentricities, and larger mutual inclinations. A combination of both populations can reproduce the observed distributions of spacings, period ratios, transiting planet multiplicities, and transit duration ratios exhibited by Kepler super-Earths. The two populations, both formed in situ, also help to explain observed trends of eccentricity vs. planet size, and bulk density vs. method of mass measurement (radial velocities vs. transit timing variations). Simplifications made in this study --- including the limited timespan of the simulations, and the approximate treatments of gas dynamical friction and gas depletion history --- should be improved upon in future work to enable a detailed quantitative comparison to the observations.



rate research

Read More

Forming gas giant planets by the accretion of 100 km diameter planetesimals, a typical size that results from self-gravity assisted planetesimal formation, is often thought to be inefficient. Many models therefore use small km-sized planetesimals, or invoke the accretion of pebbles. Furthermore, models based on planetesimal accretion often use the ad hoc assumption of planetesimals distributed radially in a minimum mass solar nebula fashion. We wish to investigate the impact of various initial radial density distributions in planetesimals with a dynamical model for the formation of planetesimals on the resulting population of planets. In doing so, we highlight the directive role of the early stages of dust evolution into pebbles and planetesimals in the circumstellar disk on the following planetary formation. We have implemented a two population model for solid evolution and a pebble flux regulated model for planetesimal formation into our global model for planet population synthesis. This framework is used to study the global effect of planetesimal formation on planet formation. As reference, we compare our dynamically formed planetesimal surface densities with ad-hoc set distributions of different radial density slopes of planetesimals. Even though required, it is not solely the total planetesimal disk mass, but the planetesimal surface density slope and subsequently the formation mechanism of planetesimals, that enables planetary growth via planetesimal accretion. Highly condensed regions of only 100 km sized planetesimals in the inner regions of circumstellar disks can lead to gas giant growth. Pebble flux regulated planetesimal formation strongly boosts planet formation, because it is a highly effective mechanism to create a steep planetesimal density profile. We find this to lead to the formation of giant planets inside 1 au by 100 km already by pure planetesimal accretion.
Most of planet formation models that incorporate planetesimal fragmentation consider a catastrophic impact energy threshold for basalts at a constant velocity of 3 km/s during all the process of the formation of the planets. However, as planets grow the relative velocities of the surrounding planetesimals increase from velocities of the order of m/s to a few km/s. In addition, beyond the ice line where giant planets are formed, planetesimals are expected to be composed roughly by 50 percentage of ices. We aim to study the role of planetesimal fragmentation on giant planet formation considering planetesimal catastrophic impact energy threshold as a function of the planetesimal relative velocities and compositions. We improve our model of planetesimal fragmentation incorporating a functional form of the catastrophic impact energy threshold with the planetesimal relative velocities and compositions. We also improve in our model the accretion of small fragments produced by the fragmentation of planetesimals during the collisional cascade considering specific pebble accretion rates. We find that a more accurate and realistic model for the calculation of the catastrophic impact energy threshold tends to slow down the formation of massive cores. Only for reduced grain opacity values at the envelope of the planet, the cross-over mass is achieved before the disk time-scale dissipation. While planetesimal fragmentation favors the quick formation of massive cores of 5-10 Earth masses the cross-over mass could be inhibited by planetesimal fragmentation. However, grain opacity reduction or pollution by the accreted planetesimals together with planetesimal fragmentation could explain the formation of giant planets with low-mass cores.
The Juno mission has provided an accurate determination of Jupiters gravitational field, which has been used to obtain information about the planets composition and internal structure. Several models of Jupiters structure that fit the probes data suggest that the planet has a diluted core, with a total heavy-element mass ranging from ten to a few tens of Earth masses (~5-15 % of the Jovian mass), and that heavy elements (elements other than H and He) are distributed within a region extending to nearly half of Jupiters radius. Planet-formation models indicate that most heavy elements are accreted during the early stages of a planets formation to create a relatively compact core and that almost no solids are accreted during subsequent runaway gas accretion. Jupiters diluted core, combined with its possible high heavy-element enrichment, thus challenges standard planet-formation theory. A possible explanation is erosion of the initially compact heavy-element core, but the efficiency of such erosion is uncertain and depends on both the immiscibility of heavy materials in metallic hydrogen and on convective mixing as the planet evolves. Another mechanism that can explain this structure is planetesimal enrichment and vaporization during the formation process, although relevant models typically cannot produce an extended diluted core. Here we show that a sufficiently energetic head-on collision (giant impact) between a large planetary embryo and the proto-Jupiter could have shattered its primordial compact core and mixed the heavy elements with the inner envelope. Models of such a scenario lead to an internal structure that is consistent with a diluted core, persisting over billions of years. We suggest that collisions were common in the young Solar system and that a similar event may have also occurred for Saturn, contributing to the structural differences between Jupiter and Saturn.
The discovery of giant planets in wide orbits represents a major challenge for planet formation theory. In the standard core accretion paradigm planets are expected to form at radial distances $lesssim 20$ au in order to form massive cores (with masses $gtrsim 10~textrm{M}_{oplus}$) able to trigger the gaseous runaway growth before the dissipation of the disc. This has encouraged authors to find modifications of the standard scenario as well as alternative theories like the formation of planets by gravitational instabilities in the disc to explain the existence of giant planets in wide orbits. However, there is not yet consensus on how these systems are formed. In this letter, we present a new natural mechanism for the formation of giant planets in wide orbits within the core accretion paradigm. If photoevaporation is considered, after a few Myr of viscous evolution a gap in the gaseous disc is opened. We found that, under particular circumstances planet migration becomes synchronised with the evolution of the gap, which results in an efficient outward planet migration. This mechanism is found to allow the formation of giant planets with masses $M_plesssim 1 M_{rm Jup}$ in wide stable orbits as large as $sim$130 au from the central star.
Context: We studied numerically the formation of giant planet (GP) and brown dwarf (BD) embryos in gravitationally unstable protostellar disks and compared our findings with directly-imaged, wide-orbit (>= 50 AU) companions known to-date. The viability of the disk fragmentation scenario for the formation of wide-orbit companions in protostellar disks around (sub-)solar mass stars was investigated. Methods: We used numerical hydrodynamics simulations of disk formation and evolution with an accurate treatment of disk thermodynamics. The use of the thin-disk limit allowed us to probe the long-term evolution of protostellar disks. We focused on models that produced wide-orbit GP/BD embryos, which opened a gap in the disk and showed radial migration timescales similar to or longer than the typical disk lifetime. Results: While disk fragmentation was seen in the majority of our models, only 6 models out of 60 revealed the formation of quasi-stable, wide-orbit GP/BD embryos. Disk fragmentation produced GP/BD embryos with masses in the 3.5-43 M_J range, covering the whole mass spectrum of directly-imaged, wide-orbit companions to (sub-)solar mass stars. On the other hand, our modelling failed to produce embryos on orbital distances <= 170 AU, whereas several directly-imaged companions were found at smaller orbits down to a few AU. Disk fragmentation also failed to produce wide-orbit companions around stars with mass <= 0.7 Msun, in disagreement with observations. Conclusions: Disk fragmentation is unlikely to explain the whole observed spectrum of wide-orbit companions to (sub-)solar-mass stars and other formation mechanisms, e.g., dynamical scattering of closely-packed companions onto wide orbits, should be invoked to account for companions at orbital distance from a few tens to approx 150 AU and wide-orbit companions with masses of the host star <= 0.7 Msun. (abridged)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا