Do you want to publish a course? Click here

The impact of pebble flux regulated planetesimal formation on giant planet formation

335   0   0.0 ( 0 )
 Added by Oliver Voelkel
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Forming gas giant planets by the accretion of 100 km diameter planetesimals, a typical size that results from self-gravity assisted planetesimal formation, is often thought to be inefficient. Many models therefore use small km-sized planetesimals, or invoke the accretion of pebbles. Furthermore, models based on planetesimal accretion often use the ad hoc assumption of planetesimals distributed radially in a minimum mass solar nebula fashion. We wish to investigate the impact of various initial radial density distributions in planetesimals with a dynamical model for the formation of planetesimals on the resulting population of planets. In doing so, we highlight the directive role of the early stages of dust evolution into pebbles and planetesimals in the circumstellar disk on the following planetary formation. We have implemented a two population model for solid evolution and a pebble flux regulated model for planetesimal formation into our global model for planet population synthesis. This framework is used to study the global effect of planetesimal formation on planet formation. As reference, we compare our dynamically formed planetesimal surface densities with ad-hoc set distributions of different radial density slopes of planetesimals. Even though required, it is not solely the total planetesimal disk mass, but the planetesimal surface density slope and subsequently the formation mechanism of planetesimals, that enables planetary growth via planetesimal accretion. Highly condensed regions of only 100 km sized planetesimals in the inner regions of circumstellar disks can lead to gas giant growth. Pebble flux regulated planetesimal formation strongly boosts planet formation, because it is a highly effective mechanism to create a steep planetesimal density profile. We find this to lead to the formation of giant planets inside 1 au by 100 km already by pure planetesimal accretion.



rate research

Read More

We propose an expression for a local planetesimal formation rate proportional to the instantaneous radial pebble flux. The result --- a radial planetesimal distribution --- can be used as initial condition to study the formation of planetary embryos. We follow the idea that one needs particle traps to locally enhance the dust-to-gas ratio sufficiently such that particle gas interactions can no longer prevent planetesimal formation on small scales. The location of these traps can emerge everywhere in the disk. Their occurrence and lifetime is subject of ongoing research, thus they are implemented via free parameters. This enables us to study the influence of the disk properties on the formation of planetesimals, predicting their time dependent formation rates and location of primary pebble accretion. We show that large $alpha$-values of $0.01$ (strong turbulence) prevent the formation of planetesimals in the inner part of the disk, arguing for lower values of around $0.001$ (moderate turbulence), at which planetesimals form quickly at all places where they are needed for proto-planets. Planetesimals form as soon as dust has grown to pebbles ($simmathrm{mm}$ to $mathrm{dm}$) and the pebble flux reaches a critical value, which is after a few thousand years at $2-3,$AU and after a few hundred thousand years at $20-30,$AU. Planetesimal formation lasts until the pebble supply has decreased below a critical value. The final spatial planetesimal distribution is steeper compared to the initial dust and gas distribution which helps to explain the discrepancy between the minimum mass solar nebula and viscous accretion disks.
122 - O. M. Guilera 2015
In the standard model of core accretion, the formation of giant planets occurs by two main processes: first, a massive core is formed by the accretion of solid material; then, when this core exceeds a critical value (typically greater than 10 Earth masses) a gaseous runaway growth is triggered and the planet accretes big quantities of gas in a short period of time until the planet achieves its final mass. Thus, the formation of a massive core has to occur when the nebular gas is still available in the disk. This phenomenon imposes a strong time-scale constraint in giant planet formation due to the fact that the lifetimes of the observed protoplanetary disks are in general lower than 10 Myr. The formation of massive cores before 10 Myr by accretion of big planetesimals (with radii > 10 km) in the oligarchic growth regime is only possible in massive disks. However, planetesimal accretion rates significantly increase for small bodies, especially for pebbles, particles of sizes between mm and cm, which are strongly coupled with the gas. In this work, we study the formation of giant planets incorporating pebble accretion rates in our global model of planet formation.
The equation of state calculated by Saumon and collaborators has been adopted in most core-accretion simulations of giant-planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulations of giant-planet formation that considers a corrected equation of state. We employ the same code as Fortier and collaborators in repeating our previous simulations of the formation of Jupiter. Although the general conclusions of Fortier and collaborators remain valid, we obtain significantly lower core masses and shorter formation times in all cases considered. The minor errors in the previously published equation of state have been shown to affect directly the adiabatic gradient and the specific heat, causing an overestimation of both the core masses and formation times.
Planetesimals are compact astrophysical objects roughly 1-1000 km in size, massive enough to be held together by gravity. They can grow by accreting material to become full-size planets. Planetesimals themselves are thought to form by complex physical processes from small grains in protoplanetary disks. The streaming instability (SI) model states that mm/cm-size particles (pebbles) are aerodynamically collected into self-gravitating clouds which then directly collapse into planetesimals. Here we analyze ATHENA simulations of the SI to characterize the initial properties (e.g., rotation) of pebble clouds. Their gravitational collapse is followed with the PKDGRAV N-body code, which has been modified to realistically account for pebble collisions. We find that pebble clouds rapidly collapse into short-lived disk structures from which planetesimals form. The planetesimal properties depend on the clouds scaled angular momentum, l=L/(M R_H^2 Omega, where L and M are the angular momentum and mass, R_H is the Hill radius, and Omega is the orbital frequency. Low-l pebble clouds produce tight (or contact) binaries and single planetesimals. Compact high-l clouds give birth to binary planetesimals with attributes that closely resemble the equal-size binaries found in the Kuiper belt. Significantly, the SI-triggered gravitational collapse can explain the angular momentum distribution of known equal-size binaries -- a result pending verification from studies with improved resolution. About 10% of collapse simulations produce hierarchical systems with two or more large moons. These systems should be found in the Kuiper belt when observations reach the threshold sensitivity.
Most of planet formation models that incorporate planetesimal fragmentation consider a catastrophic impact energy threshold for basalts at a constant velocity of 3 km/s during all the process of the formation of the planets. However, as planets grow the relative velocities of the surrounding planetesimals increase from velocities of the order of m/s to a few km/s. In addition, beyond the ice line where giant planets are formed, planetesimals are expected to be composed roughly by 50 percentage of ices. We aim to study the role of planetesimal fragmentation on giant planet formation considering planetesimal catastrophic impact energy threshold as a function of the planetesimal relative velocities and compositions. We improve our model of planetesimal fragmentation incorporating a functional form of the catastrophic impact energy threshold with the planetesimal relative velocities and compositions. We also improve in our model the accretion of small fragments produced by the fragmentation of planetesimals during the collisional cascade considering specific pebble accretion rates. We find that a more accurate and realistic model for the calculation of the catastrophic impact energy threshold tends to slow down the formation of massive cores. Only for reduced grain opacity values at the envelope of the planet, the cross-over mass is achieved before the disk time-scale dissipation. While planetesimal fragmentation favors the quick formation of massive cores of 5-10 Earth masses the cross-over mass could be inhibited by planetesimal fragmentation. However, grain opacity reduction or pollution by the accreted planetesimals together with planetesimal fragmentation could explain the formation of giant planets with low-mass cores.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا