Do you want to publish a course? Click here

EXTraS discovery of an 1.2-s X-ray pulsar in M 31

426   0   0.0 ( 0 )
 Added by Paolo Esposito Dr
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

During a search for coherent signals in the X-ray archival data of XMM-Newton, we discovered a modulation at 1.2 s in 3XMM J004301.4+413017 (3X J0043), a source lying in the direction of an external arm of M 31. This short period indicates a neutron star (NS). Between 2000 and 2013, the position of 3X J0043 was imaged by public XMM-Newton observations 35 times. The analysis of these data allowed us to detect an orbital modulation at 1.27 d and study the long-term properties of the source. The emission of the pulsar was rather hard (most spectra are described by a power law with $Gamma < 1$) and, assuming the distance to M 31, the 0.3-10 keV luminosity was variable, from $sim$$3times10^{37}$ to $2times10^{38}$ erg s$^{-1}$. The analysis of optical data shows that, while 3X J0043 is likely associated to a globular cluster in M 31, a counterpart with $Vgtrsim22$ outside the cluster cannot be excluded. Considering our findings, there are two main viable scenarios for 3X J0043: a peculiar low-mass X-ray binary, similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary resembling Her X-1. Regardless of the exact nature of the system, 3X J0043 is the first accreting NS in M 31 in which the spin period has been detected.



rate research

Read More

We present the first detection of an X-ray flare from an ultracool dwarf of spectral class L. The event was identified in the EXTraS database of XMM-Newton variable sources, and its optical counterpart, J0331-27, was found through a cross-match with the Dark Energy Survey Year 3 release. Next to an earlier four-photon detection of Kelu-1, J0331-27 is only the second L dwarf detected in X-rays, and much more distant than other ultracool dwarfs with X-ray detections (photometric distance of 240 pc). From an optical spectrum with the VIMOS instrument at the VLT, we determine the spectral type of J0331-27 to be L1. The X-ray flare has an energy of E_X,F ~ 2x10^33 erg, placing it in the regime of superflares. No quiescent emission is detected, and from 2.5 Msec of XMM data we derive an upper limit of L_X,qui < 10^27 erg/s. The flare peak luminosity L_X,peak = 6.3x10^29 erg/s, flare duration tau_decay ~ 2400 s, and plasma temperature (~16 MK) are similar to values observed in X-ray flares of M dwarfs. This shows that strong magnetic reconnection events and the ensuing plasma heating are still present even in objects with photospheres as cool as ~2100 K. However, the absence of any other flares above the detection threshold of E_X,F ~2.5x10^32 erg in a total of ~2.5 Ms of X-ray data yields a flare energy number distribution inconsistent with the canonical power law dN/dE ~ E^-2, suggesting that magnetic energy release in J0331-27 -- and possibly in all L dwarfs -- takes place predominantly in the form of giant flares.
We performed a search for eclipsing and dipping sources in the archive of the EXTraS project - a systematic characterization of the temporal behaviour of XMM-Newton point sources. We discovered dips in the X-ray light curve of 3XMM J004232.1+411314, which has been recently associated with the hard X-ray source dominating the emission of M31. A systematic analysis of XMM-Newton observations revealed 13 dips in 40 observations (total exposure time $sim$0.8 Ms). Among them, four observations show two dips, separated by $sim$4.01 hr. Dip depths and durations are variable. The dips occur only during low-luminosity states (L$_{0.2-12}<1times10^{38}$ erg s$^{-1}$), while the source reaches L$_{0.2-12}sim2.8times10^{38}$ erg s$^{-1}$. We propose this system to be a new dipping Low-Mass X-ray Binary in M31 seen at high inclination (60$^{circ}$-80$^{circ}$), the observed dipping periodicity is the orbital period of the system. A blue HST source within the Chandra error circle is the most likely optical counterpart of the accretion disk. The high luminosity of the system makes it the most luminous dipper known to date.
NGC 7793 P13 is a variable (luminosity range ~100) ultraluminous X-ray source (ULX) proposed to host a stellar-mass black hole of less than 15 M$_{odot}$ in a binary system with orbital period of 64 d and a 18-23 M$_{odot}$ B9Ia companion. Within the EXTraS project we discovered pulsations at a period of ~0.42 s in two XMM-Newton observations of NGC 7793 P13, during which the source was detected at $L_{mathrm{X}}sim2.1times10^{39}$ and $5times10^{39}$ erg s$^{-1}$ (0.3-10 keV band). These findings unambiguously demonstrate that the compact object in NGC 7793 P13 is a neutron star accreting at super-Eddington rates. While standard accretion models face difficulties accounting for the pulsar X-ray luminosity, the presence of a multipolar magnetic field with $B$ ~ few $times$ 10$^{13}$ G close to the base of the accretion column appears to be in agreement with the properties of the system.
We obtained an optical spectrum of a star we identify as the optical counterpart of the M31 Chandra source CXO J004318.8+412016, because of prominent emission lines of the Balmer series, of neutral helium, and a He II line at 4686 Angstrom. The continuum energy distribution and the spectral characteristics demonstrate the presence of a red giant of K or earlier spectral type, so we concluded that the binary is likely to be a symbiotic system. CXO J004318.8+412016 has been observed in X-rays as a luminous supersoft source (SSS) since 1979, with effective temperature exceeding 40 eV and variable X-ray luminosity, oscillating between a few times 10(35) erg/s and a few times 10(37) erg/s. The optical, infrared and ultraviolet colors of the optical object are consistent with an an accretion disk around a compact object companion, which may either be a white dwarf, or a black hole, depending on the system parameters. If the origin of the luminous supersoft X-rays is the atmosphere of a white dwarf that is burning hydrogen in shell, it is as hot and luminous as post-thermonuclear flash novae, yet no major optical outburst has ever been observed, suggesting that the white dwarf is very massive (m>1.2 M(sol)) and it is accreting and burning at the high rate (mdot>10(-8)M(sol)/year) expected for type Ia supernovae progenitors. In this case, the X-ray variability may be due to a very short recurrence time of only mildly degenerate thermonuclear flashes.
We report the discovery of a flaring X-ray source in the globular cluster NGC 6540, obtained during the EXTraS project devoted to a systematic search for variability in archival data of the XMM-Newton satellite. The source had a quiescent X-ray luminosity of the order of ~10^32 erg/s in the 0.5-10 keV range (for a distance of NGC 6540 of 4 kpc) and showed a flare lasting about 300 s. During the flare, the X-ray luminosity increased by more than a factor 40, with a total emitted energy of ~10^36 erg. These properties, as well as Hubble Space Telescope photometry of the possible optical counterparts, suggest the identification with a chromospherically active binary. However, the flare luminosity is significantly higher than what commonly observed in stellar flares of such a short duration, leaving open the possibility of other interpretations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا