Do you want to publish a course? Click here

EXTraS discovery of an X-ray superflare from an L dwarf

120   0   0.0 ( 0 )
 Added by Andrea De Luca
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first detection of an X-ray flare from an ultracool dwarf of spectral class L. The event was identified in the EXTraS database of XMM-Newton variable sources, and its optical counterpart, J0331-27, was found through a cross-match with the Dark Energy Survey Year 3 release. Next to an earlier four-photon detection of Kelu-1, J0331-27 is only the second L dwarf detected in X-rays, and much more distant than other ultracool dwarfs with X-ray detections (photometric distance of 240 pc). From an optical spectrum with the VIMOS instrument at the VLT, we determine the spectral type of J0331-27 to be L1. The X-ray flare has an energy of E_X,F ~ 2x10^33 erg, placing it in the regime of superflares. No quiescent emission is detected, and from 2.5 Msec of XMM data we derive an upper limit of L_X,qui < 10^27 erg/s. The flare peak luminosity L_X,peak = 6.3x10^29 erg/s, flare duration tau_decay ~ 2400 s, and plasma temperature (~16 MK) are similar to values observed in X-ray flares of M dwarfs. This shows that strong magnetic reconnection events and the ensuing plasma heating are still present even in objects with photospheres as cool as ~2100 K. However, the absence of any other flares above the detection threshold of E_X,F ~2.5x10^32 erg in a total of ~2.5 Ms of X-ray data yields a flare energy number distribution inconsistent with the canonical power law dN/dE ~ E^-2, suggesting that magnetic energy release in J0331-27 -- and possibly in all L dwarfs -- takes place predominantly in the form of giant flares.



rate research

Read More

In an XMM-Newton observation of the binary SDSS J121209.31+013627.7, consisting of a white dwarf and an L dwarf, we detect X-ray orbital modulation as proof of accretion from the substellar companion onto the magnetic white dwarf. We constrain the system geometry (inclination as well as magnetic and pole-cap angle) through modelling of the X-ray light curve, and we derive a mass accretion rate of 3.2 10^(-14) M_sun/yr from the X-ray luminosity (~ 3 10^(29) erg/s). From X-ray studies of L dwarfs, a possible wind driven from a hypothesized corona on the substellar donor is orders of magnitude too weak to explain the observed accretion rate, while the radius of the L dwarf is comparable to its Roche lobe (0.1 R_sun), making Roche-lobe overflow the likely accretion mechanism in this system.
During a search for coherent signals in the X-ray archival data of XMM-Newton, we discovered a modulation at 1.2 s in 3XMM J004301.4+413017 (3X J0043), a source lying in the direction of an external arm of M 31. This short period indicates a neutron star (NS). Between 2000 and 2013, the position of 3X J0043 was imaged by public XMM-Newton observations 35 times. The analysis of these data allowed us to detect an orbital modulation at 1.27 d and study the long-term properties of the source. The emission of the pulsar was rather hard (most spectra are described by a power law with $Gamma < 1$) and, assuming the distance to M 31, the 0.3-10 keV luminosity was variable, from $sim$$3times10^{37}$ to $2times10^{38}$ erg s$^{-1}$. The analysis of optical data shows that, while 3X J0043 is likely associated to a globular cluster in M 31, a counterpart with $Vgtrsim22$ outside the cluster cannot be excluded. Considering our findings, there are two main viable scenarios for 3X J0043: a peculiar low-mass X-ray binary, similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary resembling Her X-1. Regardless of the exact nature of the system, 3X J0043 is the first accreting NS in M 31 in which the spin period has been detected.
We report the discovery of OGLE-UCXB-01, a 12.8 minute variable object located in the central field of Galactic bulge globular cluster Djorg 2. The presence of frequent, short-duration brightenings at such an ultrashort period in long-term OGLE photometry together with the blue color of the object in Hubble Space Telescope images and the detection of moderately hard X-rays by Chandra observatory point to an ultracompact X-ray binary system. The observed fast period decrease makes the system a particularly interesting target for gravitational-wave detectors such as the planned Laser Interferometer Space Antenna.
We report the detection of orbital modulation, a model solution, and X-ray properties of a newly discovered contact binary, 2MASS J11201034$-$2201340. We serendipitously found this X-ray point source outside the error ellipse when searching for possible X-ray counterparts of $gamma$-ray millisecond pulsars among the unidentified objects detected by the {it Fermi Gamma-ray Space Telescope}. The optical counterpart of the X-ray source (unrelated to the $gamma$-ray source) was then identified using archival databases. The long-term CRTS survey detected a precise signal with a period of $P=0.28876208(56)$ days. A follow-up observation made by the SLT telescope of Lulin Observatory revealed the binary nature of the object. Utilizing archived photometric data of multi-band surveys, we construct the spectral energy distribution, which is well fitted by a K2V spectral template. The fitting result of the orbital profile using the Wilson--Devinney code suggests that 2MASS J11201034-2201340 is a short-period A-type contact binary and the more massive component has a cool spot. The X-ray emission was first noted in observations made by swift, then further confirmed and characterized by an xmm observation. The X-ray spectrum can be described by a power law or thermal Bremsstrahlung. Unfortunately, we could not observe significant X-ray orbital modulation. Finally, according to the spectral energy distribution, this system is estimated to be 690 pc from Earth with a calculated X-ray intensity of $(0.7-1.5)times 10^{30}$ erg s$^{-1}$, which is in the expected range of an X-ray emitting contact binary.
We have examined the optical/X-ray light curves of seven well-observed recurrent novae, V745 Sco, M31N 2008-12a, LMC N 1968, U Sco, RS Oph, LMC N 2009a, T Pyx, and one recurrent nova candidate LMC N 2012a. Six novae out of the eight show a simple relation that the duration of supersoft X-ray source (SSS) phase is 0.70 times the total duration of the outburst ($=$ X-ray turnoff time), i.e., $t_{rm SSS}=0.70 t_{rm off}$, the total duration of which ranges from 10 days to 260 days. These six recurrent novae show a broad rectangular X-ray light curve shape, first half a period of which is highly variable in the X-ray count rate. The SSS phase corresponds also to an optical plateau phase that indicates a large accretion disk irradiated by a hydrogen-burning WD. The other two recurrent novae, T Pyx and V745 Sco, show a narrow triangular shape of X-ray light curve without an optical plateau phase. Their relations between $t_{rm SSS}$ and $t_{rm off}$ are rather different from the above six recurrent novae. We also present theoretical SSS durations for recurrent novae with various WD masses and stellar metallicities ($Z=$0.004, 0.01, 0.02, and 0.05) and compare with observed durations of these recurrent novae. We show that the SSS duration is a good indicator of the WD mass in the recurrent novae with a broad rectangular X-ray light curve shape.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا