No Arabic abstract
We construct a family of chiral anomaly-free supergravity theories in D=6 starting from D=7 supergravity with a gauged noncompact R-symmetry, employing a Horava-Witten bulk-plus-boundary construction. The gauged noncompact R-symmetry yields a positive (de Sitter sign) D=6 scalar field potential. Classical anomaly inflow which is needed to cancel boundary-field loop anomalies requires careful consideration of the gravitational, gauge, mixed and local supersymmetry anomalies. Coupling of boundary hypermultiplets requires care with the Sp(1) gauge connection required to obtain quaternionic Kahler target manifolds in D=6. This class of gauged R-symmetry models may be of use as starting points for further compactifications to D=4 that take advantage of the positive scalar potential, such as those proposed in the scenario of supersymmetry in large extra dimensions.
Type IIB string theory on a 5-sphere gives rise to ${cal N}=8, SO(6)$ gauged supergravity in five dimensions. Motivated by the fact that this is the context of the most widely studied example of the AdS/CFT correspondence, we undertake an investigation of its critical points. The scalar manifold is an $E_{6(6)}/USp(8)$ coset, and the challenge is that it is 42-dimensional. We take a Machine Learning approach to the problem using TensorFlow, and this results in a substantial increase in the number of known critical points. Our list of 32 critical points contains all five of the previously known ones, including an ${cal N}=2$ supersymmetric point identified by Khavaev, Pilch and Warner.
We construct the most general gaugings of the maximal D=6 supergravity. The theory is (2,2) supersymmetric, and possesses an on-shell SO(5,5) duality symmetry which plays a key role in determining its couplings. The field content includes 16 vector fields that carry a chiral spinor representation of the duality group. We utilize the embedding tensor method which determines the appropriate combinations of these vectors that participate in gauging of a suitable subgroup of SO(5,5). The construction also introduces the magnetic duals of the 5 two-form potentials and 16 vector fields.
We study the cosmology of a recent model of supersymmetry breaking, in the presence of a tuneable positive cosmological constant, based on a gauged shift symmetry of a string modulus that can be identified with the string dilaton. The minimal spectrum of the `hidden supersymmetry breaking sector consists then of a vector multiplet that gauges the shift symmetry of the dilaton multiplet and when coupled to the MSSM leads to a distinct low energy phenomenology depending on one parameter. Here we study the question if this model can also lead to inflation by identifying the dilaton with the inflaton. We find that this is possible if the Kahler potential is modified by a term that has the form of NS5-brane instantons, leading to an appropriate inflationary plateau around the maximum of the scalar potential, depending on two extra parameters. This model is consistent with present cosmological observations without modifying the low energy particle phenomenology associated to the minimum of the scalar potential.
Four-graviton couplings in the low energy effective action of type II string vacua compactified on tori are strongly constrained by supersymmetry and U-duality. While the $R^4$ and $D^4 R^4$ couplings are known exactly in terms of Langlands-Eisenstein series of the U-duality group, the $D^6 R^4$ couplings are not nearly as well understood. Exploiting the coincidence of the U-duality group in $D=6$ with the T-duality group in $D=5$, we propose an exact formula for the $D^6 R^4$ couplings in type II string theory compactified on $T^4$, in terms of a genus-two modular integral plus a suitable Eisenstein series. The same modular integral computes the two-loop correction to $D^6 R^4$ in 5 dimensions, but here provides the non-perturbative completion of the known perturbative terms in $D=6$. This proposal hinges on a systematic re-analysis of the weak coupling and large radius of the $D^6 R^4$ in all dimensions $Dgeq 3$, which fills in some gaps and resolves some inconsistencies in earlier studies.
We study the system of equations derived twenty five years ago by B. de Wit and the first author [Nucl. Phys. B281 (1987) 211] as conditions for the consistent truncation of eleven-dimensional supergravity on AdS_4 x S^7 to gauged N = 8 supergravity in four dimensions. By exploiting the E_7(7) symmetry, we determine the most general solution to this system at each point on the coset space E_7(7)/SU(8). We show that invariants of the general solution are given by the fluxes in eleven-dimensional supergravity. This allows us to both clarify the explicit non-linear ansatze for the fluxes given previously and to fill a gap in the original proof of the consistent truncation. These results are illustrated with several examples.