Do you want to publish a course? Click here

Two-Dimensional Bose-Hubbard Model for Helium on Graphene

69   0   0.0 ( 0 )
 Added by Adrian Del Maestro
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

An exciting development in the field of correlated systems is the possibility of realizing two-dimensional (2D) phases of quantum matter. For a systems of bosons, an example of strong correlations manifesting themselves in a 2D environment is provided by helium adsorbed on graphene. We construct the effective Bose-Hubbard model for this system which involves hard-core bosons $(Uapproxinfty)$, repulsive nearest-neighbor $(V>0)$ and small attractive $(V<0)$ next-nearest neighbor interactions. The mapping onto the Bose-Hubbard model is accomplished by a variety of many-body techniques which take into account the strong He-He correlations on the scale of the graphene lattice spacing. Unlike the case of dilute ultracold atoms where interactions are effectively point-like, the detailed microscopic form of the short range electrostatic and long range dispersion interactions in the helium-graphene system are crucial for the emergent Bose-Hubbard description. The result places the ground state of the first layer of $^4$He adsorbed on graphene deep in the commensurate solid phase with $1/3$ of the sites on the dual triangular lattice occupied. Because the parameters of the effective Bose-Hubbard model are very sensitive to the exact lattice structure, this opens up an avenue to tune quantum phase transitions in this solid-state system.



rate research

Read More

Topological states of matter, such as fractional quantum Hall states, are an active field of research due to their exotic excitations. In particular, ultracold atoms in optical lattices provide a highly controllable and adaptable platform to study such new types of quantum matter. However, finding a clear route to realize non-Abelian quantum Hall states in these systems remains challenging. Here we use the density-matrix renormalization-group (DMRG) method to study the Hofstadter-Bose-Hubbard model at filling factor $ u = 1$ and find strong indications that at $alpha=1/6$ magnetic flux quanta per plaquette the ground state is a lattice analog of the continuum non-Abelian Pfaffian. We study the on-site correlations of the ground state, which indicate its paired nature at $ u = 1$, and find an incompressible state characterized by a charge gap in the bulk. We argue that the emergence of a charge density wave on thin cylinders and the behavior of the two- and three-particle correlation functions at short distances provide evidence for the state being closely related to the continuum Pfaffian. The signatures discussed in this letter are accessible in current cold atom experiments and we show that the Pfaffian-like state is readily realizable in few-body systems using adiabatic preparation schemes.
170 - Santi Prestipino 2021
Ever since the first observation of Bose-Einstein condensation in the nineties, ultracold quantum gases have been the subject of intense research, providing a unique tool to understand the behavior of matter governed by the laws of quantum mechanics. Ultracold bosonic atoms loaded in an optical lattice are usually described by the Bose-Hubbard model or a variant of it. In addition to the common insulating and superfluid phases, other phases (like density waves and supersolids) may show up in the presence of a short-range interparticle repulsion and also depending on the geometry of the lattice. We herein explore this possibility, using the graph of a convex polyhedron as lattice and playing with the coordination of nodes to promote the wanted finite-size ordering. To accomplish the job we employ the method of decoupling approximation, whose efficacy is tested in one case against exact diagonalization. We report zero-temperature results for two Catalan solids, the tetrakis hexahedron and the pentakis dodecahedron, for which a thorough ground-state analysis reveals the existence of insulating phases with polyhedral order and a widely extended supersolid region. The key to this outcome is the unbalance in coordination between inequivalent nodes of the graph. The predicted phases can be probed in systems of ultracold atoms using programmable holographic optical tweezers.
We construct a basis for the many-particle ground states of the positive hopping Bose-Hubbard model on line graphs of finite 2-connected planar bipartite graphs at sufficiently low filling factors. The particles in these states are localized on non-intersecting vertex-disjoint cycles of the line graph which correspond to non-intersecting edge-disjoint cycles of the original graph. The construction works up to a critical filling factor at which the cycles are close-packed.
We analyze real-time dynamics of the two-dimensional Bose-Hubbard model after a sudden quench starting from the Mott insulator by means of the two-dimensional tensor-network method. Calculated single-particle correlation functions are found to be in good agreement with a recent experiment [Y. Takasu {it et al.}, Sci. Adv. {bf 6}, eaba9255 (2020)], which cross validates the experiment and the numerical simulation. By estimating the phase and group velocities from the single-particle and density-density correlation functions, we predict how these velocities vary in the moderate interaction region, which will be useful for future experiments.
151 - S. Ejima , F. Lange , H. Fehske 2013
We employ the (dynamical) density matrix renormalization group technique to investigate the ground-state properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-body repulsion of strength U and W, respectively. We determine the phase boundaries between the Mott-insulating and superfluid phases for the lowest two Mott lobes from the chemical potentials. We calculate the tips of the Mott lobes from the Tomonaga-Luttinger liquid parameter and confirm the positions of the Kosterlitz-Thouless points from the von Neumann entanglement entropy. We find that physical quantities in the second Mott lobe such as the gap and the dynamical structure factor scale almost perfectly in t/(U+W), even close to the Mott transition. Strong-coupling perturbation theory shows that there is no true scaling but deviations from it are quantitatively small in the strong-coupling limit. This observation should remain true in higher dimensions and for not too large attractive three-body interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا