Do you want to publish a course? Click here

Probing Wolf-Rayet Winds: Chandra/HETG X-Ray Spectra of WR 6

97   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.



rate research

Read More

We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet star. 400 ks observations of WR 6 by the XMM-Newton-telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability could create shocks. The X-ray emitting plasma reaches temperatures up to 50,MK, and is embedded within the un-shocked, cool stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at approx 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the line-driving instability nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow sticky clumps that resist acceleration. Our new data show that the X-rays in single WR-star are generated by some special mechanism different from the one operating in the O-star winds.
WR 125 is considered as a Colliding Wind Wolf-rayet Binary (CWWB), from which the most recent infrared flux increase was reported between 1990 and 1993. We observed the object four times from November 2016 to May 2017 with Swift and XMM-Newton, and carried out a precise X-ray spectral study for the first time. There were hardly any changes of the fluxes and spectral shapes for half a year, and the absorption-corrected luminosity was 3.0e+33 erg/s in the 0.5 - 10.0 keV range at a distance of 4.1 kpc. The hydrogen column density was higher than that expected from the interstellar absorption, thus the X-ray spectra were probably absorbed by the WR wind. The energy spectrum was successfully modeled by a collisional equilibrium plasma emission, where both the plasma and the absorbing wind have unusual elemental abundances particular to the WR stars. In 1981, the Einstein satellite clearly detected X-rays from WR 125, whereas the ROSAT satellite hardly detected X-rays in 1991, when the binary was probably around the periastron passage. We discuss possible causes for the unexpectedly low soft X-ray flux near the periastron.
Using XMM-Newton, we undertook a dedicated project to search for X-ray bright wind-wind collisions in 18 WR+OB systems. We complemented these observations with Swift and Chandra datasets, allowing for the study of two additional systems. We also improved the ephemerides, for these systems displaying photometric changes, using TESS, Kepler, and ASAS-SN data. Five systems displayed a very faint X-ray emission ($log [L_{rm X}/L_{rm BOL}]<-8$) and three a faint one ($log [L_{rm X}/L_{rm BOL}]sim-7$), incompatible with typical colliding wind emission: not all WR binaries are thus X-ray bright. In a few other systems, X-rays from the O-star companion cannot be excluded as being the true source of X-rays (or a large contributor). In two additional cases, the emission appears faint but the observations were taken with the WR wind obscuring the line-of-sight, which could hide a colliding wind emission. Clear evidence of colliding winds was however found in the remaining six systems (WR19, 21, 31, 97, 105, 127). In WR19, increased absorption and larger emission at periastron are even detected, in line with expectations of adiabatic collisions.
Near infrared spectroscopy and photometry of the Wolf-Rayet Star WR 143 (HD 195177) were obtained in the $JHK$ photometric bands. High resolution spectra observed in the J and H bands exhibit narrow 1.083-micron He I line and the H I Pa Beta and the Brackett series lines in emission superposed on the broad emission line spectrum of the Wolf-Rayet star, giving strong indications of the presence of a companion. From the narrow emission lines observed, the companion is identified to be an early-type Be star. The photometric magnitudes exhibit variations in the JHK bands which are probably due to the variability of the companion star. The flux density distribution is too steep for a Wolf-Rayet atmosphere. This is identified to be mainly due to the increasing contribution from the early-type companion star towards shorter wavelengths.
The massive evolved Wolf-Rayet stars sometimes occur in colliding-wind binary systems in which dust plumes are formed as a result of the collision of stellar winds. These structures are known to encode the parameters of the binary orbit and winds. Here, we report observations of a previously undiscovered Wolf-Rayet system, 2XMM J160050.7-514245, with a spectroscopically determined wind speed of $approx$3400 km s$^{-1}$. In the thermal infrared, the system is adorned with a prominent $approx$12$$ spiral dust plume, revealed by proper motion studies to be expanding at only $approx$570 km s$^{-1}$. As the dust and gas appear coeval, these observations are inconsistent with existing models of the dynamics of such colliding wind systems. We propose that this contradiction can be resolved if the system is capable of launching extremely anisotropic winds. Near-critical stellar rotation is known to drive such winds, suggesting this Wolf-Rayet system as a potential Galactic progenitor system for long-duration gamma-ray bursts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا