Do you want to publish a course? Click here

New X-ray detections of known Wolf-Rayet stars

121   0   0.0 ( 0 )
 Added by Yael Naze
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using XMM-Newton, we undertook a dedicated project to search for X-ray bright wind-wind collisions in 18 WR+OB systems. We complemented these observations with Swift and Chandra datasets, allowing for the study of two additional systems. We also improved the ephemerides, for these systems displaying photometric changes, using TESS, Kepler, and ASAS-SN data. Five systems displayed a very faint X-ray emission ($log [L_{rm X}/L_{rm BOL}]<-8$) and three a faint one ($log [L_{rm X}/L_{rm BOL}]sim-7$), incompatible with typical colliding wind emission: not all WR binaries are thus X-ray bright. In a few other systems, X-rays from the O-star companion cannot be excluded as being the true source of X-rays (or a large contributor). In two additional cases, the emission appears faint but the observations were taken with the WR wind obscuring the line-of-sight, which could hide a colliding wind emission. Clear evidence of colliding winds was however found in the remaining six systems (WR19, 21, 31, 97, 105, 127). In WR19, increased absorption and larger emission at periastron are even detected, in line with expectations of adiabatic collisions.



rate research

Read More

We report the detection of 7 new Wolf-Rayet (WR) star locations in M81 using the Multi-Object Spectrograph of the OSIRIS instrument at Gran Telescopio Canarias. These detections are the result of a follow-up of an earlier study using the same instrumental set-up that resulted in the detection of 14 WR locations. We analyse the entire sample of 21 spectra to classify them to one of the known WR sub-types using template spectra of WR stars in the Large Magellanic Cloud (LMC), with similar metallicity to M81. Taking into consideration the dispersion in the strengths of the bumps for a given WR sub-type, we found that 19 of the 21 locations correspond to individual stars, including all the 7 new detections, of sub-types: WNL, WNE, WCE and the transitional WN/C. None of the detections correspond to WCL or WO types. The positions of these stars in the red bump vs blue bump luminosity diagram agrees well with an evolutionary path according to the Conti scenario. Based on this, we propose this diagram as a straightforward tool for spectral classification of extragalactic WR sources. The detection of individual WR stars in M81, which is at a distance of 3.6 Mpc, opens up a new environment for testing the massive star evolutionary models.
84 - Jorick S. Vink 2015
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn into an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures Teff, (iii) an increase in the helium abundance Y, and finally (iv) the Eddington factor Gamma. Over the last couple of years, we have made a breakthrough in our understanding of Gamma-dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Ly-alpha and He II emitting galaxies.
Using a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the stars evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. Our simulated X-ray spectra compare reasonably well with observed spectra of Wolf-Rayet bubbles. They suggest that X-ray nebulae around massive stars may not be easily detectable, consistent with observations.
The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its Northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity ~22 arcmin in size and a shell thickness of ~8 arcmin. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of NIV at 0.43 keV and OVII at 0.57 keV, and declines towards high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T1 ~ 1.1x10^6 K, T2 ~ 13x10^6 K), with a total X-ray luminosity ~2x10^33 erg/s at the assumed distance of 1.5 kpc.
We show that black-hole High-Mass X-ray Binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbor black holes. The reason why black-hole HMXBs with these orbital periods may survive spiral in is: the combination of a radiative envelope of the donor star, and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche-lobe overflow, as is shown by the system SS433. In this case the transferred mass is ejected from the vicinity of the compact star (so-called isotropic re-emission mass loss mode, or SS433-like mass loss), leading to gradual spiral-in. If the mass ratio of donor and black hole is $>3.5$, these systems will go into CE evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-Black-Hole binaries,which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as $sim 10^{-5}$ per year.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا