Do you want to publish a course? Click here

Measurement of camera image sensor depletion thickness with cosmic rays

108   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Camera image sensors can be used to detect ionizing radiation in addition to optical photons. In particular, cosmic-ray muons are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of cosmic-ray muon tracks recorded by the Distributed Electronic Cosmic-ray Observatory to measure the thickness of the depletion region of the camera image sensor in a commercial smart phone, the HTC Wildfire S. The track length distribution prefers a cosmic-ray muon angular distribution over an isotropic distribution. Allowing either distribution, we measure the depletion thickness to be between 13.9~$mu$m and 27.7~$mu$m. The same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events.



rate research

Read More

China JinPing underground Laboratory (CJPL) is the deepest underground laboratory presently running in the world. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic ray on the ground laboratory near CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in CJPL, which has effective live time of 171 days, the cosmic ray muon flux in CJPL is measured to be (2.0+-0.4)*10^(-10)/(cm^2)/(s). The ultra-low cosmic ray background guarantees CJPLs ideal environment for dark matter experiment.
56 - Xin He , Y. Liu , P. Beckett 2020
A CMY colour camera differs from its RGB counterpart in that it employs a subtractive colour space of cyan, magenta and yellow. CMY cameras tend to performs better than RGB cameras in low light conditions due to their much higher transmittance. However, conventional CMY colour filter technology made of pigments and dyes are limited in performance for the next generation image sensors with submicron pixel sizes. These conventional filters are difficult to fabricate at nanoscale dimensions as they use their absorption properties to subtract colours. This paper presents a CMOS compatible nanoscale thick CMY colour mosaic made of Al-TiO2-Al nanorods forming an array 0.82 million colour pixels of 4.4 micron each, arranged in a CMYM pattern. The colour mosaic was then integrated onto a MT9P031 monochrome image sensor to make a CMY camera and the colour imaging demonstrated using a 12 colour Macbeth chart. The developed technology will have applications in astronomy, low exposure time imaging in biology and photography.
113 - C. Yang , X.J. Huang , C.M. Du 2014
We report the timing and spatial resolution from the Muon Telescope Detector (MTD) installed in the STAR experiment at RHIC. Cosmic ray muons traversing the STAR detector have an average transverse momentum of 6 GeV/c. Due to their very small multiple scattering, these cosmic muons provide an ideal tool to calibrate the detectors and measure their timing and spatial resolution. The values obtained were ~100 ps and ~1-2 cm, respectively. These values are comparable to those obtained from cosmic-ray bench tests and test beams.
We present first measurements by MAYBE of microwave emission from an electron beam induced air plasma, performed at the electron Van de Graaff facility of the Argonne National Laboratory. Coherent radio Cherenkov, a major background in a previous beam experiment, is not produced by the 3 MeV beam, which simplifies the interpretation of the data. Radio emission is studied over a wide range of frequencies between 3 and 12 GHz. This measurement provides further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا