No Arabic abstract
In a generalized framework for the Landauer erasure protocol, we study bounds on the heat dissipated in typical nonequilibrium quantum processes. In contrast to thermodynamic processes, quantum fluctuations are not suppressed in the nonequilibrium regime and cannot be ignored, making such processes difficult to understand and treat. Here we derive an emergent fluctuation relation that virtually guarantees the average heat produced to be dissipated into the reservoir either when the system or reservoir is large (or both) or when the temperature is high. The implication of our result is that for nonequilibrium processes, heat fluctuations away from its average value are suppressed independently of the underlying dynamics exponentially quickly in the dimension of the larger subsystem and linearly in the inverse temperature. We achieve these results by generalizing a concentration of measure relation for subsystem states to the case where the global state is mixed.
Continuing our work on the nature and existence of fluctuation-dissipation relations (FDR) in linear and nonlinear open quantum systems [1-3], here we consider such relations when a linear system is in a nonequilibrium steady state (NESS). With the model of two-oscillators (considered as a short harmonic chain with the two ends) each connected to a thermal bath of different temperatures we find that when the chain is fully relaxed due to interaction with the baths, the relation that connects the noise kernel and the imaginary part of the dissipation kernel of the chain in one bath does not assume the conventional form for the FDR in equilibrium cases. There exists an additional term we call the `bias current that depends on the difference of the baths initial temperatures and the inter-oscillator coupling strength. We further show that this term is related to the steady heat flow between the two baths when the system is in NESS. The ability to know the real-time development of the inter-heat exchange (between the baths and the end-oscillators) and the intra-heat transfer (within the chain) and their dependence on the parameters in the system offers possibilities for quantifiable control and in the design of quantum heat engines or thermal devices.
The thermodynamic properties of quantum heat engines are stochastic owing to the presence of thermal and quantum fluctuations. We here experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle. We first study the correlations between work and heat within a cycle by extracting their joint distribution for different driving times. We show that near perfect anticorrelation, corresponding to the tight-coupling condition, can be achieved. In this limit, the reconstructed efficiency distribution is peaked at the macroscopic efficiency and fluctuations are strongly suppressed. We further test the second law in the form of a joint fluctuation relation for work and heat. Our results characterize the statistical features of a small-scale thermal machine in the quantum domain and provide means to control them.
We formulate exact generalized nonequilibrium fluctuation relations for the quantum mechanical harmonic oscillator coupled to multiple harmonic baths. Each of the different baths is prepared in its own individual (in general nonthermal) state. Starting from the exact solution for the oscillator dynamics we study fluctuations of the oscillator position as well as of the energy current through the oscillator under general nonequilibrium conditions. In particular, we formulate a fluctuation-dissipation relation for the oscillator position autocorrelation function that generalizes the standard result for the case of a single bath at thermal equilibrium. Moreover, we show that the generating function for the position operator fullfills a generalized Gallavotti-Cohen-like relation. For the energy transfer through the oscillator, we determine the average energy current together with the current fluctuations. Finally, we discuss the generalization of the cumulant generating function for the energy transfer to nonthermal bath preparations.
In this work, we investigate the heat exchange between two quantum systems whose initial equilibrium states are described by the generalized Gibbs ensemble. First, we generalize the fluctuation relations for heat exchange discovered by Jarzynski and Wojcik to quantum systems prepared in the equilibrium states described by the generalized Gibbs ensemble at different generalized temperatures. Second, we extend the connections between heat exchange and Renyi divergences to quantum systems with very general initial conditions.These relations are applicable for quantum systems with conserved quantities and are universally valid for quantum systems in the integrable and chaotic regimes.
In this paper we study the nonequilibrium evolution of a quantum Brownian oscillator, modeling the internal degree of freedom of a harmonic atom or an Unruh-DeWitt detector, coupled to a nonequilibrium, nonstationary quantum field and inquire whether a fluctuation-dissipation relation can exist after/if it approaches equilibration. This is a nontrivial issue since a squeezed bath field cannot reach equilibration and yet, as this work shows, the system oscillator indeed can, which is a necessary condition for FDRs. We discuss three different settings: A) The bath field essentially remains in a squeezed thermal state throughout, whose squeeze parameter is a mode- and time-independent constant. This situation is often encountered in quantum optics and quantum thermodynamics. B) The field is initially in a thermal state, but subjected to a parametric process leading to mode- and time-dependent squeezing. This scenario is met in cosmology and dynamical Casimir effect. The squeezing in the bath in both types of processes will affect the oscillators nonequilibrium evolution. We show that at late times it approaches equilibration, which warrants the existence of an FDR. The trait of squeezing is marked by the oscillators effective equilibrium temperature, and the factor in the FDR is only related to the stationary component of baths noise kernel. Setting C) is more subtle: A finite system-bath coupling strength can set the oscillator in a squeezed state even the bath field is stationary and does not engage in any parametric process. The squeezing of the system in this case is in general time-dependent but becomes constant when the internal dynamics is fully relaxed. We begin with comments on the broad range of physical processes involving squeezed thermal baths and end with some remarks on the significance of FDRs in capturing the essence of quantum backreaction in nonequilibrium systems.