Do you want to publish a course? Click here

Nonequilibrium fluctuations of a quantum heat engine

68   0   0.0 ( 0 )
 Added by Tobias Denzler
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermodynamic properties of quantum heat engines are stochastic owing to the presence of thermal and quantum fluctuations. We here experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle. We first study the correlations between work and heat within a cycle by extracting their joint distribution for different driving times. We show that near perfect anticorrelation, corresponding to the tight-coupling condition, can be achieved. In this limit, the reconstructed efficiency distribution is peaked at the macroscopic efficiency and fluctuations are strongly suppressed. We further test the second law in the form of a joint fluctuation relation for work and heat. Our results characterize the statistical features of a small-scale thermal machine in the quantum domain and provide means to control them.



rate research

Read More

We derive the probability distribution of the efficiency of a quantum Otto engine. We explicitly compute the quantum efficiency statistics for an analytically solvable two-level engine. We analyze the occurrence of values of the stochastic efficiency above unity, in particular at infinity, in the nonadiabatic regime and further determine mean and variance in the case of adiabatic driving. We finally investigate the classical-to-quantum transition as the temperature is lowered.
We propose a quantum enhanced heat engine with entanglement. The key feature of our scheme is to utilize a superabsorption that exhibits an enhanced energy absorption by entangled qubits. While a conventional engine with separable qubits provides a scaling of a power $P = Theta (N)$ for given $N$ qubits, our engine using the superabsorption provides a power with a quantum scaling of $P = Theta(N^2)$ at a finite temperature. Our results pave the way for a new generation of quantum heat engines.
We study a quantum Stirling cycle which extracts work using quantized energy levels of a potential well. The work and the efficiency of the engine depend on the length of the potential well, and the Carnot efficiency is approached in a low temperature limiting case. We show that the lack of information about the position of the particle inside the potential well can be converted into useful work without resorting to any measurement. In the low temperature limit, we calculate the amount of work extractable from distinguishable particles, fermions, and bosons.
The performances of quantum thermometry in thermal equilibrium together with the output power of certain class of quantum engines share a common characteristic: both are determined by the heat capacity of the probe or working medium. After noticing that the heat capacity of spin ensembles can be significantly modified by collective coupling with a thermal bath, we build on the above observation to investigate the respective impact of such collective effect on quantum thermometry and quantum engines. We find that the precision of the temperature estimation is largely increased at high temperatures, reaching even the Heisenberg scaling - inversely proportional to the number of spins. For Otto engines operating close to the Carnot efficiency, collective coupling always enhances the output power. Some tangible experimental platforms are suggested.
81 - Yu-Han Ma , Dazhi Xu , Hui Dong 2018
The constraint relation for efficiency and power is crucial to design optimal heat engines operating within finite time. We find a universal constraint between efficiency and output power for heat engines operating in the low-dissipation regime. Such constraint is validated with an example of Carnot-like engine. Its microscopic dynamics is governed by the master equation. Based on the master equation, we connect the microscopic coupling strengths to the generic parameters in the phenomenological model. We find the usual assumption of low-dissipation is achieved when the coupling to thermal environments is stronger than the driving speed. Additionally, such connection allows the design of practical cycle to optimize the engine performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا