Do you want to publish a course? Click here

Power--bandwidth limitations of an optical resonance

54   0   0.0 ( 0 )
 Added by Owen Miller
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present shape-independent upper limits to the power--bandwidth product for a single resonance in an optical scatterer, with the bound depending only on the material susceptibility. We show that quasistatic metallic scatterers can nearly reach the limits, and we apply our approach to the problem of designing $N$ independent, subwavelength scatterers to achieve flat, broadband response even if they individually exhibit narrow resonant peaks.



rate research

Read More

72 - Duo Pan , Tiantian Shi , Bin Luo 2017
Taking advantages of ultra-narrow bandwidth and high noise rejection performance of the Faraday anomalous dispersion optical filter (FADOF), simultaneously with the coherent amplification of atomic stimulated emission, a stimulated amplified Faraday anomalous dispersion optical filter (SAFADOF) at cesium 1470 nm is realized. The SAFADOF is able to significantly amplify very weak laser signals and reject noise in order to obtain clean signals in strong background. Experiment results show that, for a weak signal of 50 pW, the gain factor can be larger than 25000 (44 dB) within a bandwidth as narrow as 13 MHz. Having this ability to amplify weak signals with low background contribution, the SAFADOF finds outstanding potential applications in weak signal detections.
We present a novel theoretical approach for modeling the resonant properties of transmission through subwavelength apertures penetrating metal films. We show that cavity mode theory applies to an effective resonant cavity whose dimensions are determined by the apertures geometry and the evanescent decay lengths of the associated diffracted waves. This method suggests a concrete physical mechanism for the enhanced transmission observed in periodic aperture arrays, namely it is the evanescently scattered light, localized in the near field of metal surface, which couples into the apertures. Furthermore, it analytically predicts the frequencies of peaks in enhanced transmission, the quality factor of the peaks, and explains their dependence on variation in the hole radius, periodicity, and the film thickness over a wide range of geometries. This model demonstrates strong correlation to simulation and existing results with a high degree of accuracy.
Subwavelength resonators, ranging from single atoms to metallic nanoparticles, typically exhibit a narrow-bandwidth response to optical excitations. We computationally design and experimentally synthesize tailored distributions of silver nanodisks to extinguish light over broad and varied frequency windows. We show that metallic nanodisks are two-to-ten-times more efficient in absorbing and scattering light than common structures, and can approach fundamental limits to broadband scattering for subwavelength particles. We measure broadband extinction per volume that closely approaches theoretical predictions over three representative visible-range wavelength windows, confirming the high efficiency of nanodisks and demonstrating the collective power of computational design and experimental precision for developing new photonics technologies.
Photon pairs and heralded single photons, obtained from cavity-assisted parametric down-conversion (PDC), play an important role in quantum communications and technology. This motivated a thorough study of the spectral and temporal properties of parametric light, both above the Optical Parametric Oscillator (OPO) threshold, where the semiclassical approach is justified, and deeply below it, where the linear cavity approximation is applicable. The pursuit of a higher two-photon emission rate leads into an interesting intermediate regime where the OPO still operates considerably below the threshold but the nonlinear cavity phenomena cannot be neglected anymore. Here, we investigate this intermediate regime and show that the spectral and temporal properties of the photon pairs, as well as their emission rate, may significantly differ from the widely accepted linear model. The observed phenomena include frequency pulling and broadening in the temporal correlation for the down-converted optical fields. These factors need to be taken into account when devising practical applications of the high-rate cavity-assisted SPDC sources.
379 - Jun Yang , H. Dong , C.P. Sun 2008
In this letter, we investigate the coherent tunneling process of photons between a defected circular resonator and a waveguide based on the recently developed discrete coordinate scattering methods (L. Zhou et al., Phys. Rev. Lett. 101, 100501 (2008)). We show the detailed microscopic mechanism of the tunneling and present a simple model for defect coupling in the resonator. The Finite-Difference Time-Domain(FDTD) numerical results is explored to illustrate the analysis results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا