No Arabic abstract
In this work, we present a numerical scheme to study the quasinormal modes of the time-dependent Vaidya black hole metric in asymptotically anti-de Sitter spacetime. The proposed algorithm is primarily based on a generalized matrix method for quasinormal modes. The main feature of the present approach is that the quasinormal frequency, as a function of time, is obtained by a generalized secular equation and therefore a satisfactory degree of precision is achieved. The implications of the results are discussed.
We generalize our previous studies on the Maxwell quasinormal modes around Schwarzschild-anti-de-Sitter black holes with Robin type vanishing energy flux boundary conditions, by adding a global monopole on the background. We first formulate the Maxwell equations both in the Regge-Wheeler-Zerilli and in the Teukolsky formalisms and derive, based on the vanishing energy flux principle, two boundary conditions in each formalism. The Maxwell equations are then solved analytically in pure anti-de Sitter spacetimes with a global monopole, and two different normal modes are obtained due to the existence of the monopole parameter. In the small black hole and low frequency approximations, the Maxwell quasinormal modes are solved perturbatively on top of normal modes by using an asymptotic matching method, while beyond the aforementioned approximation, the Maxwell quasinormal modes are obtained numerically. We analyze the Maxwell quasinormal spectrum by varying the angular momentum quantum number $ell$, the overtone number $N$, and in particular, the monopole parameter $8pieta^2$. We show explicitly, through calculating quasinormal frequencies with both boundary conditions, that the global monopole produces the repulsive force.
In this paper, we study spontaneous scalarization of asymptotically anti-de Sitter charged black holes in the Einstein-Maxwell-scalar model with a non-minimal coupling between the scalar and Maxwell fields. In this model, Reissner-Nordstrom-AdS (RNAdS) black holes are scalar-free black hole solutions, and may induce scalarized black holes due to the presence of a tachyonic instability of the scalar field near the event horizon. For RNAdS and scalarized black hole solutions, we investigate the domain of existence, perturbative stability against spherical perturbations and phase structure. In a micro-canonical ensemble, scalarized solutions are always thermodynamically preferred over RNAdS black holes. However, the system has much rich phase structure and phase transitions in a canonical ensemble. In particular, we report a RNAdS BH/scalarized BH/RNAdS BH reentrant phase transition, which is composed of a zeroth-order phase transition and a second-order one.
In this work we study the Sorkin-Johnston (SJ) vacuum in de Sitter spacetime for free scalar field theory. For the massless theory we find that the SJ vacuum can neither be obtained from the $O(4)$ Fock vacuum of Allen and Folacci nor from the non-Fock de Sitter invariant vacuum of Kirsten and Garriga. Using a causal set discretisation of a slab of 2d and 4d de Sitter spacetime, we find the causal set SJ vacuum for a range of masses $m geq 0$ of the free scalar field. While our simulations are limited to a finite volume slab of global de Sitter spacetime, they show good convergence as the volume is increased. We find that the 4d causal set SJ vacuum shows a significant departure from the continuum Motolla-Allen $alpha$-vacua. Moreover, the causal set SJ vacuum is well-defined for both the minimally coupled massless $m=0$ and the conformally coupled massless $m=m_c$ cases. This is at odds with earlier work on the continuum de Sitter SJ vacuum where it was argued that the continuum SJ vacuum is ill-defined for these masses. Our results hint at an important tension between the discrete and continuum behaviour of the SJ vacuum in de Sitter and suggest that the former cannot in general be identified with the Mottola-Allen $alpha$-vacua even for $m>0$.
We provide a prescription to compute the gravitational multipole moments of compact objects for asymptotically de Sitter spacetimes. Our prescription builds upon a recent definition of the gravitational multipole moments in terms of Noether charges associated to specific vector fields, within the residual harmonic gauge, dubbed multipole symmetries. We first derive the multipole symmetries for spacetimes which are asymptotically de Sitter; we also show that these symmetry vector fields eliminate the non-propagating degrees of freedom from the linearized gravitational wave equation in a suitable gauge. We then apply our prescription to the Kerr-de Sitter black hole and compute its multipole structure. Our result recovers the Geroch-Hansen moments of the Kerr black hole in the limit of vanishing cosmological constant.
The existence of quasinormal modes (QNMs) for waves propagating on pure de Sitter space has been called into question in several works. We definitively prove the existence of quasinormal modes for massless and massive scalar fields in all dimensions and for all scalar field masses, and present a simple method for the explicit calculation of QNMs and the corresponding mode solutions. By passing to coordinates which are regular at the cosmological horizon, we demonstrate that certain QNMs only appear in the QNM expansion of the field when the initial data do not vanish near the cosmological horizon. The key objects in the argument are dual resonant states. These are distributional mode solutions of the adjoint field equation satisfying a generalized incoming condition at the horizon, and they characterize the amplitudes with which QNMs contribute to the QNM expansion of the field.