Do you want to publish a course? Click here

Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In$_{1-x}$Fe$_x$)$_2$O$_3$

97   0   0.0 ( 0 )
 Added by Robert Green
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In$_2$O$_3$ films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.



rate research

Read More

Material research has been a major driving force in the development of modern nano-electronic devices. In particular, research in magnetic thin films has revolutionized the development of spintronic devices; identifying new magnetic materials is key to better device performance and new device paradigm. The advent of two-dimensional van der Waals crystals creates new possibilities. This family of materials retain their chemical stability and structural integrity down to monolayers and, being atomically thin, are readily tuned by various kinds of gate modulation. Recent experiments have demonstrated that it is possible to obtain two-dimensional ferromagnetic order in insulating Cr$_2$Ge$_2$Te$_6$ and CrI$_3$ at low temperatures. Here, we developed a new device fabrication technique, and successfully isolated monolayers from layered metallic magnet Fe$_3$GeTe$_2$ for magnetotransport study. We found that the itinerant ferromagnetism persists in Fe$_3$GeTe$_2$ down to monolayer with an out-of-plane magnetocrystalline anisotropy. The ferromagnetic transition temperature, $T_c$, is suppressed in pristine Fe$_3$GeTe$_2$ thin flakes. An ionic gate, however, dramatically raises the $T_c$ up to room temperature, significantly higher than the bulk $T_c$ of 205 Kelvin. The gate-tunable room-temperature ferromagnetism in two-dimensional Fe$_3$GeTe$_2$ opens up opportunities for potential voltage-controlled magnetoelectronics based on atomically thin van der Waals crystals.
Simultaneous co-existence of room-temperature(T) ferromagnetism and ferroelectricity in Fe doped BaTiO$_3$ (BTO) is intriguing, as such Fe doping into tetragonal BTO, a room-T ferroelectric (FE), results in the stabilization of its hexagonal polymorph which is FE only below $sim$80K. Here, we investigate its origin and show that Fe-doped BTO has a mixed-phase room-temperature multiferroicity, where the ferromagnetism comes from the majority hexagonal phase and a minority tetragonal phase gives rise to the observed weak ferroelectricity. In order to achieve majority tetragonal phase (responsible for room-T ferroelectricity) in Fe-doped BTO, we investigate the role of different parameters which primarily control the PE hexagonal phase stability over the FE tetragonal one and identify three major factors namely, the effect of ionic size, Jahn-Teller (J-T) distortions and oxygen vacancies (OVs), to be primarily responsible. The effect of ionic size which can be qualitatively represented using the Goldschmidts tolerance (GT) factor seems to be the major dictating factor for the hexagonal phase stability. The understanding of these factors not only enables us to control them but also, achieve suitable co-doped BTO compound with enhanced room-T multiferroic properties.
We report results of the dielectric and pyroelectric measurements on solid solutions of Ga$_2$$_-$$_x$Fe$_x$O$_3$ with x = 0.75, 1.0 and 1.25. These systems exhibit dipolar cluster glass behavior in addition to the spin glass behavior making them belong to a class of few systems showing multiglass behavior. Presence of two contributing relaxations in dielectric data are observed possibly due to the flipping and breathing of polar nano-clusters. Further, emergence of polarization in these systems can be understood in terms of thermally stimulated depolarization current (TSDC) effect caused by defect dipoles possibly associated with charged oxygen vacancies rather than the intrinsic ferroelectric behavior.
For powder samples of CuAl$_{1-x}$Fe$_x$O$_2$ ($x =$ 0, 0.01, 0.05, and 0.1), measured optical properties are compared with model simulations and phonon spectra are compared with simulations based on weighted dynamical matrix approach.
To understand the magnetic properties of Fe$_3$GeTe$_2$, we performed the detailed first-principles study. Contrary to the conventional wisdom, it is unambiguously shown that Fe$_3$GeTe$_2$ is not ferromagnetic but antiferromagnetic carrying zero net moment in its stoichiometric phase. Fe defect and hole doping are the keys to make this material ferromagnetic, which are shown by the magnetic force response as well as the total energy calculation with the explicit Fe defects and the varied system charges. Further, we found that the electron doping also induces the antiferro- to ferromagnetic transition. It is a crucial factor to understand the notable recent experiment of gate-controlled ferromagnetism. Our results not only unveil the origin of ferromagnetism of this material but also show how it can be manipulated with defect and doping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا