We report results of the dielectric and pyroelectric measurements on solid solutions of Ga$_2$$_-$$_x$Fe$_x$O$_3$ with x = 0.75, 1.0 and 1.25. These systems exhibit dipolar cluster glass behavior in addition to the spin glass behavior making them belong to a class of few systems showing multiglass behavior. Presence of two contributing relaxations in dielectric data are observed possibly due to the flipping and breathing of polar nano-clusters. Further, emergence of polarization in these systems can be understood in terms of thermally stimulated depolarization current (TSDC) effect caused by defect dipoles possibly associated with charged oxygen vacancies rather than the intrinsic ferroelectric behavior.
Using density-functional ab initio calculations, we provide a revised phase diagram of (Ga$_{1-x}$In$_{x})_2$O$_3$. Three phases --monoclinic, hexagonal, cubic bixbyite-- compete for the ground state. In particular, in the $x$$sim$0.5 region we expect coexistence of hexagonal, $beta$, and bixbyite (the latter separating into binary components). Over the whole $x$ range, mixing occurs in three disconnected regions, and non-mixing in two additional distinct regions. We then explore the permanent polarization of the various phases, finding that none of them is polar at any concentration, despite the possible symmetry reductions induced by alloying. On the other hand, we find that the $varepsilon$ phase of Ga$_2$O$_3$ stabilized in recent growth experiments is pyroelectric --i.e. locked in a non-switchable polarized structure-- with ferroelectric-grade polarization and respectable piezoelectric coupling. We suggest that this phase could be used profitably to produce high-density electron gases in transistor structures.
Based on first-principles calculations, we show that the maximum reachable concentration $x$ in the (Ga$_{1-x}$In$_x$)$_2$O$_3$ alloy in the low-$x$ regime (i.e. In solubility in $beta$-Ga$_2$O$_3$) is around 10%. We then calculate the band alignment at the (100) interface between $beta$-Ga$_2$O$_3$ and (Ga$_{1-x}$In$_x$)$_2$O$_3$ at 12%, the nearest computationally treatable concentration. The alignment is strongly strain-dependent: it is of type-B staggered when the alloy is epitaxial on Ga$_2$O$_3$, and type-A straddling in a free-standing superlattice. Our results suggest a limited range of applicability of low-In-content GaInO alloys.
$beta$-Ga$_2$O$_3$ is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy (STEM), we find the thermodynamically-unstable $gamma$-phase is a ubiquitous defect in both $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ films and doped $beta$-Ga$_2$O$_3$ films grown by molecular beam epitaxy. For undoped $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ films we observe $gamma$-phase inclusions between nucleating islands of the $beta$-phase at lower growth temperatures (~400-600 $^{circ}$C). In doped $beta$-Ga$_2$O$_3$, a thin layer of the $gamma$-phase is observed on the surfaces of films grown with a wide range of n-type dopants and dopant concentrations. The thickness of the $gamma$-phase layer was most strongly correlated with the growth temperature, peaking at about 600 $^{circ}$C. Ga interstitials are observed in $beta$-phase, especially near the interface with the $gamma$-phase. By imaging the same region of the surface of a Sn-doped $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ after ex-situ heating up to 400 $^{circ}$C, a $gamma$-phase region is observed to grow above the initial surface, accompanied by a decrease in Ga interstitials in the $beta$-phase. This suggests that the diffusion of Ga interstitials towards the surface is likely the mechanism for growth of the surface $gamma$-phase, and more generally that the more-open $gamma$-phase may offer diffusion pathways to be a kinetically-favored and early-forming phase in the growth of Ga$_2$O$_3$.
Using density-functional ab initio theoretical techniques, we study (Ga$_{1-x}$In$_x$)$_2$O$_3$ in both its equilibrium structures (monoclinic $beta$ and bixbyite) and over the whole range of composition. We establish that the alloy exhibits a large and temperature-independent miscibility gap. On the low-$x$ side, the favored phase is isostructural with $beta$-Ga$_2$O$_3$; on the high-$x$ side, it is isostructural with bixbyite In$_2$O$_3$. The miscibility gap opens between approximately 15% and 55% In content for the bixbyite alloy grown epitaxially on In$_2$O$_3$, and 15% and 85% In content for the free-standing bixbyite alloy. The gap, volume and band offsets to the parent compound also exhibit anomalies as function of $x$. Specifically, the offsets in epitaxial conditions are predominantly type-B staggered, but have opposite signs in the two end-of-range phases.
Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In$_2$O$_3$ films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.