No Arabic abstract
We propose a new concept of an electron source for ultrafast electron diffraction with sub-10~fs temporal resolution. Electrons are generated in a laser-plasma accelerator, able to deliver femtosecond electron bunches at 5 MeV energy with kHz repetition rate. The possibility of producing this electron source is demonstrated using Particle-In-Cell simulations. We then use particle tracking simulations to show that this electron beam can be transported and manipulated in a realistic beamline, in order to reach parameters suitable for electron diffraction. The beamline consists of realistic static magnetic optics and introduces no temporal jitter. We demonstrate numerically that electron bunches with 5~fs duration and containing 1.5~fC per bunch can be produced, with a transverse coherence length exceeding 2~nm, as required for electron diffraction.
We present a method for producing sub-100 fs electron bunches that are suitable for single-shot ultrafast electron diffraction experiments in the 100 keV energy range. A combination of analytical results and state-of-the-art numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs electron bunches with a spotsize smaller than 500 micron and a transverse coherence length of 3 nm, using established technologies in a table-top set-up. The system operates in the space-charge dominated regime to produce energy-correlated bunches that are recompressed by established radio-frequency techniques. With this approach we overcome the Coulomb expansion of the bunch, providing an entirely new ultrafast electron diffraction source concept.
Laser Plasma Accelerators (LPA) can sustain GeV/m accelerating fields offering outstanding new possibilities for compact applications. Despite the impressive recent developments, the LPA beam quality is still significantly lower than in the conventional radio-frequency accelerators, which is an issue in the cases of demanding applications such as Free Electron Lasers (FELs). If the electron beam duration is below few tens of femtosecond keeping pC charges, the mrad level divergence and few percent energy spread are particularly limiting. Several concepts of transfer line were proposed to mitigate those intrinsic properties targetting undulator radiation applications. We study here the robustness of the chromatic matching strategy for FEL amplification at 200~nm in a dedicated transport line, and analyze its sensitivity to several parameters. We consider not only the possible LPA source jitters, but also various realistic defaults of the equipment such as magnetic elements misalignements or focussing strength errors, unperfect undulator fields, etc...
Cold atom electron sources are a promising alternative to traditional photocathode sources for use in ultrafast electron diffraction due to greatly reduced electron temperature at creation, and the potential for a corresponding increase in brightness. Here we demonstrate single-shot, nanosecond electron diffraction from monocrystalline gold using cold electron bunches generated in a cold atom electron source. The diffraction patterns have sufficient signal to allow registration of multiple single-shot images, generating an averaged image with significantly higher signal-to-noise ratio than obtained with unregistered averaging. Reflection high-energy electron diffraction (RHEED) was also demonstrated, showing that cold atom electron sources may be useful in resolving nanosecond dynamics of nanometre scale near-surface structures.
The spectacular development of Laser-Plasma Accelerators (LPA) appears very promising for a free electron laser application. The handling of the inherent properties of those LPA beams already allowed controlled production of LPA-based spontaneous undulator radiation. Stepping further, we here unveil that the forthcoming LPA-based seeded FELs will present singular spatio-spectral distributions. Relying on numerical simulations and simple analytical models, we show how those interferometric patterns can be exploited to retrieve, in single-shot, the spectro-temporal content and source point properties of the FEL pulses.
A common issue encountered in photoemission electron sources used in electron accelerators is distortion of the laser spot due to non ideal conditions at all stages of the amplification. Such a laser spot at the cathode may produce asymmetric charged beams that will result in degradation of the beam quality due to space charge at early stages of acceleration and fail to optimally utilize the cathode surface. In this note we study the possibility of using microlens arrays to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes at both Fermilab Accelerator Science & Technology (FAST) facility and Argonne Wakefield Accelerator (AWA). In particular, we discuss the experimental characterization of the homogeneity and periodic patterned formation at the photocathode. Finally, we compare the experimental results with the paraxial analysis, ray tracing and wavefront propagation software.