Do you want to publish a course? Click here

Microlens Array Laser Transverse Shaping Technique for Photoemission Electron Source

93   0   0.0 ( 0 )
 Added by Aliaksei Halavanau
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A common issue encountered in photoemission electron sources used in electron accelerators is distortion of the laser spot due to non ideal conditions at all stages of the amplification. Such a laser spot at the cathode may produce asymmetric charged beams that will result in degradation of the beam quality due to space charge at early stages of acceleration and fail to optimally utilize the cathode surface. In this note we study the possibility of using microlens arrays to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes at both Fermilab Accelerator Science & Technology (FAST) facility and Argonne Wakefield Accelerator (AWA). In particular, we discuss the experimental characterization of the homogeneity and periodic patterned formation at the photocathode. Finally, we compare the experimental results with the paraxial analysis, ray tracing and wavefront propagation software.



rate research

Read More

57 - A. Halavanau , G. Qiang , G. Ha 2017
A common issue encountered in photoemission electron sources used in electron accelerators is the transverse inhomogeneity of the laser distribution resulting from the laser-amplification process and often use of frequency up conversion in nonlinear crystals. A inhomogeneous laser distribution on the photocathode produces charged beams with lower beam quality. In this paper, we explore the possible use of microlens arrays (fly-eye light condensers) to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes. We also demonstrate the use of such microlens arrays to generate transversely-modulated electron beams and present a possible application to diagnose the properties of a magnetized beam.
99 - D. Cesar , A. Anakru , S. Carbajo 2021
Active longitudinal beam optics can help FEL facilities achieve cutting edge performance by optimizing the beam to: produce multi-color pulses, suppress caustics, or support attosecond lasing. As the next generation of superconducting accelerators comes online, there is a need to find new elements which can both operate at high beam power and which offer multiplexing capabilities at Mhz repetition rate. Laser heater shaping promises to satisfy both criteria by imparting a programmable slice-energy spread on a shot-by-shot basis. We use a simple kinetic analysis to show how control of the slice energy spread translates into control of the bunch current profile, and then we present a collection of start-to-end simulations at LCLS-II in order to illustrate the technique.
We propose a new concept of an electron source for ultrafast electron diffraction with sub-10~fs temporal resolution. Electrons are generated in a laser-plasma accelerator, able to deliver femtosecond electron bunches at 5 MeV energy with kHz repetition rate. The possibility of producing this electron source is demonstrated using Particle-In-Cell simulations. We then use particle tracking simulations to show that this electron beam can be transported and manipulated in a realistic beamline, in order to reach parameters suitable for electron diffraction. The beamline consists of realistic static magnetic optics and introduces no temporal jitter. We demonstrate numerically that electron bunches with 5~fs duration and containing 1.5~fC per bunch can be produced, with a transverse coherence length exceeding 2~nm, as required for electron diffraction.
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. The gun utilizes a quarter-wave resonator (QWR) geometry for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.
120 - I. Gadjev , N. Sudar , M. Babzien 2017
The generation of X-rays and {gamma}-rays based on synchrotron radiation from free electrons, emitted in magnet arrays such as undulators, forms the basis of much of modern X-ray science. This approach has the drawback of requiring very high energy, up to the multi-GeV-scale, electron beams, to obtain the required photon energy. Due to the limit in accelerating gradients in conventional particle accelerators, reaching high energy typically demands use of instruments exceeding 100s of meters in length. Compact, less costly, monochromatic X-ray sources based on very high field acceleration and very short period undulators, however, may revolutionize diverse advanced X-ray applications ranging from novel X-ray therapy techniques to active interrogation of sensitive materials, by making them accessible in cost and size. Such compactness may be obtained by an all-optical approach, which employs a laser-driven high gradient accelerator based on inverse free electron laser (IFEL), followed by a collision point for inverse Compton scattering (ICS), a scheme where a laser is used to provide undulator fields. We present an experimental proof-of-principle of this approach, where a TW-class CO2 laser pulse is split in two, with half used to accelerate a high quality electron beam up to 84 MeV through the IFEL interaction, and the other half acts as an electromagnetic undulator to generate up to 13 keV X-rays via ICS. These results demonstrate the feasibility of this scheme, which can be joined with other techniques such as laser recirculation to yield very compact, high brilliance photon sources, extending from the keV to MeV scale. Furthermore, use of the IFEL acceleration with the ICS interaction produces a train of very high intensity X-ray pulses, thus also permitting a unique tool that can be phase-locked to a laser pulse in frontier pump-probe experimental scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا