No Arabic abstract
This paper overviews various phenomena related to the concept of isospin symmetry. The focus is on N~Z nuclei, which are excellent laboratories of isospin physics. The theoretical framework applied is nuclear Density Functional Theory and its isospin- and angular-momentum projected extensions, as well as symmetry-projected multi-reference models. The topics covered include: isospin impurities, superallowed beta decays, beta-transitions in mirror nuclei, isospin breaking hadronic interactions, mirror and triplet binding energy differences, and isoscalar pairing.
Background: The superallowed beta-decay rates provide stringent constraints on physics beyond the Standard Model of particle physics. To extract crucial information about the electroweak force, small isospin-breaking corrections to the Fermi matrix element of superallowed transitions must be applied. Purpose: We perform systematic calculations of isospin-breaking corrections to superallowed beta-decays and estimate theoretical uncertainties related to the basis truncation, time-odd polarization effects related to the intrinsic symmetry of the underlying Slater determinants, and to the functional parametrization. Methods: We use the self-consistent isospin- and angular-momentum-projected nuclear density functional theory employing two density functionals derived from the density independent Skyrme interaction. Pairing correlations are ignored. Our framework can simultaneously describe various effects that impact matrix elements of the Fermi decay: symmetry breaking, configuration mixing, and long-range Coulomb polarization. Results: The isospin-breaking corrections to the I=0+,T=1 --> I=0+,T=1 pure Fermi transitions are computed for nuclei from A=10 to A=98 and, for the first time, to the Fermi branch of the I,T=1/2 --> I,T=1/2 transitions in mirror nuclei from A=11 to A=49. We carefully analyze various model assumptions impacting theoretical uncertainties of our calculations and provide theoretical error bars on our predictions. Conclusions: The overall agreement with empirical isospin-breaking corrections is very satisfactory. Using computed isospin-breaking corrections we show that the unitarity of the CKM matrix is satisfied with a precision better than 0.1%.
The soliton existence in sub-atomic many-nucleon systems is discussed. In many nucleon dynamics represented by the nuclear time-dependent density functional formalism, much attention is paid to energy and mass dependence of the soliton existence. In conclusion, the existence of nuclear soliton is clarified if the temperature of nuclear system is from 10 to 30 MeV. With respect to the mass dependence $^{4}$He and $^{16}$O are suggested to be the candidates for the self-bound states exhibiting the property of nuclear soliton.
The binding energies of even-even and odd-odd N=Z nuclei are compared. After correcting for the symmetry energy we find that the lowest T=1 state in odd-odd N=Z nuclei is as bound as the ground state in the neighboring even-even nucleus, thus providing evidence for isovector np pairing. However, T=0 states in odd-odd N=Z nuclei are several MeV less bound than the even-even ground states. We associate this difference with a pair gap and conclude that there is no evidence for an isoscalar pairing condensate in N=Z nuclei.
A systematic global investigation of differential charge radii has been performed within the CDFT framework for the first time. Theoretical results obtained with conventional covariant energy density functionals and separable pairing interaction are compared with experimental differential charge radii in the regions of the nuclear chart in which available experimental data crosses neutron shell closures at N = 28, 50, 82 and 126. The analysis of absolute differential radii of different isotopic chains and their relative properties indicate clearly that such properties are reasonably well described in model calculations in the cases when the mean-field approximation is justified. However, while the observed clusterization of differential charge radii of different isotopic chains is well described above the N=50 and N=126 shell closures, it is more difficult to reproduce it above the N=28 and N=82 shell closures because of possible deficiencies in underlying single-particle structure. The impact of the latter has been evaluated for spherical shapes and it was shown that the relative energies of the single-particle states and the patterns of their occupation with increasing neutron number have an appreciable impact on the evolution of the differential charge radii. It is shown that the kinks in the charge radii at neutron shell closures are due to the underlying single-particle structure and due to weakening or collapse of pairing at these closures. It is usually assumed that pairing is a dominant contributor to odd-even staggering (OES) in charge radii. Our analysis paints a more complicated picture. It suggests a new mechanism in which the fragmentation of the single-particle content of the ground state in odd-mass nuclei due to particle-vibration coupling provides a significant contribution to OES in charge radii.
The three-dimensional tilted axis cranking covariant density functional theory (3D-TAC CDFT) is used to study the chiral modes in $^{135}$Nd. By modeling the motion of the nucleus in rotating mean field as the interplay between the single-particle motions of several valence particle(s) and hole(s) and the collective motion of a core-like part, a classical Routhian is extracted. This classical Routhian gives qualitative agreement with the 3D-TAC CDFT result for the critical frequency corresponding to the transition from planar to aplanar rotation. Based on this investigation a possible understanding of tilted rotation appearing in a microscopic theory is provided.