No Arabic abstract
Nanotechnology research requires the routine use of characterization methods with high spatial resolution. These experiments are rather costly, not only from the point of view of the expensive microscopes, but also considering the need of a rather specialized equipment operator. Here, we describe the construction of an inexpensive and simple device that allows the analysis of nanoparticle in a FEG-SEM; images can be generated at high magnifications (ex. x500.000) and with nanometric resolution. It is based on the acquisition of transmitted electrons annular dark field (TE-ADF) signal; the systems can carry up to 16 TEM samples and, it is compatible with SEM sample exchange air-lock. Performance test have shown the measured ADF signal showed the atomic number and thickness dependence for transition metal nanoparticle about 10 nm in diameter. Also, the signal quality is high enough that the determination of the histogram of size distribution can be performed using a conventional image processing software, for gold particles in the range of 2-10 nm in diameter. The developed ADF device allows a much faster and cheaper high spatial resolution imaging of nanoparticle samples for routine morphological characterization and, provides an invaluable high throughput tool for an efficient sample screening.
Competitive mechanisms contribute to image contrast from dislocations in annular dark field scanning transmission electron microscopy ADF STEM. A clear theoretical understanding of the mechanisms underlying the ADF STEM contrast is therefore essential for correct interpretation of dislocation images. This paper reports on a systematic study of the ADF STEM contrast from dislocations in a GaN specimen, both experimentally and computationally. Systematic experimental ADF STEM images of the edge character dislocations revealed a number of characteristic contrast features that are shown to depend on both the angular detection range and specific position of the dislocation in the sample. A theoretical model based on electron channelling and Bloch wave scattering theories, supported by multislice simulations using Grillo s strain channelling equation, is proposed to elucidate the physical origin of such complex contrast phenomena.
We present an aberration corrected scanning transmission electron microscopy (ac-STEM) analysis of the perovskite (LaFeO3) and pyrochlore (Yb2Ti2O7 and Pr2Zr2O7) oxides and demonstrate that both the shape and contrast of visible atomic columns in annular dark-field (ADF) images are sensitive to the presence of nearby atoms of low atomic number (e.g. oxygen). We show that point defects (e.g. oxygen vacancies), which are invisible - or difficult to observe due to limited sensitivity - in X-ray and neutron diffraction measurements, are the origin of the complex magnetic ground state of pyrochlore oxides. In addition, we present, for the first time, a method by which light atoms can be resolved in quantitative ADF-STEM images. Using this method, we resolved oxygen atoms in perovskite and pyrochlore oxides.
We present the VASPKIT, a command-line program that aims at providing a powerful and user-friendly interface to perform high-throughput analysis of a variety of material properties from the raw data produced by the VASP code. It consists of mainly the pre- and post-processing modules. The former module is designed to prepare and manipulate input files such as the necessary input files generation, symmetry analysis, supercell transformation, k-path generation for a given crystal structure. The latter module is designed to extract and analyze the raw data about elastic mechanics, electronic structure, charge density, electrostatic potential, linear optical coefficients, wave function plots in real space, and etc. This program can run conveniently in either interactive user interface or command line mode. The command-line options allow the user to perform high-throughput calculations together with bash scripts. This article gives an overview of the program structure and presents illustrative examples for some of its usages. The program can run on Linux, MacOS, and Windows platforms. The executab
Orchestrating parametric fitting of multicomponent spectra at scale is an essential yet underappreciated task in high-throughput quantification of materials and chemical composition. To automate the annotation process for spectroscopic and diffraction data collected in counts of hundreds to thousands, we present a systematic approach compatible with high-performance computing infrastructures using the MapReduce model and task-based parallelization. We implement the approach in software and demonstrate linear computational scaling with respect to spectral components using multidimensional experimental materials characterization datasets from photoemission spectroscopy and powder electron diffraction as benchmarks. Our approach enables efficient generation of high-quality data annotation and online spectral analysis and is applicable to a variety of analytical techniques in materials science and chemistry as a building block for closed-loop experimental systems.
We have performed a series of measurements on the low temperature behavior of a magnetic nano-particle system. Our results show striking memory effects in the dc magnetization. Dipolar interactions among the nano-particles {em suppress} the memory effect. We explain this phenomenon by the superposition of different super paramagnetic relaxation times of single domain magnetic nano- particles. Moreover, we observe a crossover in the temperature dependence of coercivity. We show that a dilute dispersion of particles with a flat size distribution yields the best memory.