No Arabic abstract
We study the distributions of effective diameter ($D$), beaming parameter ($eta$), and visible geometric albedo ($p_V$) of asteroids in cometry orbits (ACOs) populations, derived from NASAs Wide-field Infrared Explorer (WISE) observations, and compare these with the same, independently determined properties of the comets. The near-Earth asteroid thermal model (NEATM) is used to compute the $D$, $p_V$ and $eta$. We obtained $D$ and $p_V$ for 49 ACOs in Jupiter family cometary orbits (JF-ACOs) and 16 ACOs in Halley-type orbits (Damocloids). We also obtained $eta$ for 45 of them. All but three JF-ACOs (95% of the sample) present a low albedo compatible with a cometary origin. The $p_V$ and $eta$ distributions of both ACO populations are very similar. For the entire sample of ACOs, the mean geometric albedo is $bar{p_V} = 0.05 pm 0.02$, ($bar{p_V} = 0.05 pm 0.01$ and $bar{p_V} =0.05 pm 0.02$ for JF-ACOs and Damocloids, respectively) compatible with a narrow albedo distribution similar to that of the Jupiter family comets (JFCs), with a $bar{p_V} sim 0.04$. The $bar{eta} =1.0 pm 0.2$. We find no correlations between $D$, $p_V$ , or $eta$. We compare the cumulative size distribution (CSD) of ACOs, Centaurs, and JFCs. Although the Centaur sample contains larger objects, the linear parts in their log-log plot of the CSDs presents a similar cumulative exponent ($beta = 1.85 pm 0.30$ and $1.76 pm 0.35$, respectively). The CSD for Damocloids presents a much shallower exponent $beta = 0.89 pm 0.17$. The CSD for JF-ACOs is shallower and shifted towards larger diameters with respect to the CSD of active JFCs, which suggests that the mantling process has a size dependency whereby large comets tend to reach an inactive stage faster than small ones. Finally, the population of JF-ACOs is comparable in number that of JFCs, although there are more tens-km JF-ACOs than JFCs.
We study the visible and near-infrared (NIR) spectral properties of different ACO populations and compare them to the independently determined properties of comets. We select our ACOs sample based on published dynamical criteria and present our own observational results obtained using the 10.4m Gran Telescopio Canarias (GTC), the 4.2m William Herschel Telescope (WHT), the 3.56m Telescopio Nazionale Galileo (TNG), and the 2.5m Isaac Newton Telescope (INT), all located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility (IRTF), located at the Mauna Kea Observatory, in Hawaii. We include in the analysis the spectra of ACOs obtained from the literature. We derive the spectral class and the visible and NIR spectral slopes. We also study the presence of hydrated minerals by studying the 0.7 $mu$m band and the UV-drop below 0.5 $mu$m associated with phyllosilicates. We present new observations of 17 ACOs, 11 of them observed in the visible, 2 in the NIR and 4 in the visible and NIR. We also discuss the spectra of 12 ACOs obtained from the literature. All but two ACOs have a primitive-like class spectrum (X or D-type). Almost 100% of the ACOs in long-period cometary orbits (Damocloids) are D-types. Those in Jupiter family comet orbits (JFC-ACOs) are $sim$ 60% D-types and $sim$ 40% X-types. The mean spectral slope $S$ of JFC-ACOs is 9.7 $pm$ 4.6 %/1000 AA and for the Damocloids this is 12.2 $pm$ 2.0 %/1000 AA . No evidence of hydration on the surface of ACOs is found from their visible spectra. The slope and spectral class distribution of ACOs is similar to that of comets. The spectral classification, the spectral slope distribution of ACOs, and the lack of spectral features indicative of the presence of hydrated minerals on their surface, strongly suggest that ACOs are likely dormant or extinct comets.
Context: Surveys in the visible and near-infrared spectral range have revealed the presence of low-albedo asteroids in cometary like orbits (ACOs). In contrast to Jupiter family comets (JFCs), ACOs are inactive, but possess similar orbital parameters. Aims: In this work, we discuss why ACOs are inactive, whereas JFCs show gas-driven dust activity, although both belong to the same class of primitive solar system bodies. Methods: We hypothesize that ACOs and JFCs have formed under the same physical conditions, namely by the gravitational collapse of ensembles of ice and dust aggregates. We use the memory effect of dust-aggregate layers under gravitational compression to discuss under which conditions the gas-driven dust activity of these bodies is possible. Results: Owing to their smaller sizes, JFCs can sustain gas-driven dust activity much longer than the bigger ACOs, whose sub-surface regions possess an increased tensile strength, due to gravitational compression of the material. The increased tensile strength leads to the passivation against dust activity after a relatively short time of activity. Conclusions: The gravitational-collapse model of the formation of planetesimals, together with the gravitational compression of the sub-surface material simultaneously, explains the inactivity of ACOs and the gas-driven dust activity of JFCs. Their initially larger sizes means that ACOs possess a higher tensile strength of their sub-surface material, which leads to a faster termination of gas-driven dust activity. Most objects with radii larger than $2 , mathrm{km}$ have already lost their activity due to former gravitational compression of their current surface material.
The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 parameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows $f(x) = x exp[-x^2/(2sigma^2)]/sigma^2$ for positive x. The peak value is at x=sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at $p_V = 0.03$, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at $p_V = 0.168$. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H=22 mag, since a 140 m diameter asteroid at the very dark peak has H=23.7 mag, and more than 10% of NEAs are darker than p_V = 0.03.
Enhancements to the science data processing pipeline of NASAs Wide-field Infrared Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of $>$158,000 minor planets in four infrared wavelengths during the fully cryogenic portion of the mission. Following the depletion of its cryogen, NASAs Planetary Science Directorate funded a four month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of $sim$6500 large Main Belt asteroids and 88 NEOs in its 3.4 and 4.6 $mu$m channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.
Low-albedo, hydrated objects dominate the list of the largest asteroids. These objects have varied spectral shapes in the 3-$mu$m region, where diagnostic absorptions due to volatile species are found. Dawns visit to Ceres has extended the view shaped by ground-based observing, and shown that world to be a complex one, potentially still experiencing geological activity. We present 33 observations from 2.2-4.0 $mu$m of eight large (greater than 200 km diameter) asteroids from the C spectral complex, with spectra inconsistent with the hydrated minerals we see in meteorites. We characterize their absorption band characteristics via polynomial and Gaussian fits to test their spectral similarity to Ceres, the asteroid 24 Themis (thought to be covered in ice frost), and the asteroid 51 Nemausa (spectrally similar to the CM meteorites). We confirm most of the observations are inconsistent with what is seen in meteorites and require additional absorbers. We find clusters in band centers that correspond to Ceres- and Themis-like spectra, but no hiatus in the distribution suitable for use to simply distinguish between them. We also find a range of band centers in the spectra that approaches what is seen on Comet 67P. Finally, variation is seen between observations for some objects, with the variation on 324 Bamberga consistent with hemispheric-level difference in composition. Given the ubiquity of objects with 3-$mu$m spectra unlike what we see in meteorites, and the similarity of those spectra to the published spectra of Ceres and Themis, these objects appear much more to be archetypes than outliers.