Do you want to publish a course? Click here

Why are Jupiter-family comets active and asteroids in cometary-like orbits inactive?

85   0   0.0 ( 0 )
 Added by Bastian Gundlach
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: Surveys in the visible and near-infrared spectral range have revealed the presence of low-albedo asteroids in cometary like orbits (ACOs). In contrast to Jupiter family comets (JFCs), ACOs are inactive, but possess similar orbital parameters. Aims: In this work, we discuss why ACOs are inactive, whereas JFCs show gas-driven dust activity, although both belong to the same class of primitive solar system bodies. Methods: We hypothesize that ACOs and JFCs have formed under the same physical conditions, namely by the gravitational collapse of ensembles of ice and dust aggregates. We use the memory effect of dust-aggregate layers under gravitational compression to discuss under which conditions the gas-driven dust activity of these bodies is possible. Results: Owing to their smaller sizes, JFCs can sustain gas-driven dust activity much longer than the bigger ACOs, whose sub-surface regions possess an increased tensile strength, due to gravitational compression of the material. The increased tensile strength leads to the passivation against dust activity after a relatively short time of activity. Conclusions: The gravitational-collapse model of the formation of planetesimals, together with the gravitational compression of the sub-surface material simultaneously, explains the inactivity of ACOs and the gas-driven dust activity of JFCs. Their initially larger sizes means that ACOs possess a higher tensile strength of their sub-surface material, which leads to a faster termination of gas-driven dust activity. Most objects with radii larger than $2 , mathrm{km}$ have already lost their activity due to former gravitational compression of their current surface material.



rate research

Read More

We report new lightcurves and phase functions for nine Jupiter-family comets (JFCs). They were observed in the period 2004-2015 with various ground telescopes as part of the Survey of Ensemble Physical Properties of Cometary Nuclei (SEPPCoN) as well as during devoted observing campaigns. We add to this a review of the properties of 35 JFCs with previously published rotation properties. The photometric time-series were obtained in Bessel R, Harris R and SDSS r filters and were absolutely calibrated using stars from the Pan-STARRS survey. This specially-developed method allowed us to combine data sets taken at different epochs and instruments with absolute-calibration uncertainty down to 0.02 mag. We used the resulting time series to improve the rotation periods for comets 14P/Wolf, 47P/Ashbrook-Jackson, 94P/Russell, and 110P/Hartley 3 and to determine the rotation rates of comets 93P/Lovas and 162P/Siding-Spring for the first time. In addition to this, we determined the phase functions for seven of the examined comets and derived geometric albedos for eight of them. We confirm the known cut-off in bulk densities at $sim$0.6 g $mathrm{cm^{-3}}$ if JFCs are strengthless. Using the model of Davidsson (2001) for prolate ellipsoids with typical density and elongations, we conclude that none of the known JFCs require tensile strength larger than 10-25 Pa to remain stable against rotational instabilities. We find evidence for an increasing linear phase function coefficient with increasing geometric albedo. The median linear phase function coefficient for JFCs is 0.046 mag/deg and the median geometric albedo is 4.2 per cent.
We study the visible and near-infrared (NIR) spectral properties of different ACO populations and compare them to the independently determined properties of comets. We select our ACOs sample based on published dynamical criteria and present our own observational results obtained using the 10.4m Gran Telescopio Canarias (GTC), the 4.2m William Herschel Telescope (WHT), the 3.56m Telescopio Nazionale Galileo (TNG), and the 2.5m Isaac Newton Telescope (INT), all located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility (IRTF), located at the Mauna Kea Observatory, in Hawaii. We include in the analysis the spectra of ACOs obtained from the literature. We derive the spectral class and the visible and NIR spectral slopes. We also study the presence of hydrated minerals by studying the 0.7 $mu$m band and the UV-drop below 0.5 $mu$m associated with phyllosilicates. We present new observations of 17 ACOs, 11 of them observed in the visible, 2 in the NIR and 4 in the visible and NIR. We also discuss the spectra of 12 ACOs obtained from the literature. All but two ACOs have a primitive-like class spectrum (X or D-type). Almost 100% of the ACOs in long-period cometary orbits (Damocloids) are D-types. Those in Jupiter family comet orbits (JFC-ACOs) are $sim$ 60% D-types and $sim$ 40% X-types. The mean spectral slope $S$ of JFC-ACOs is 9.7 $pm$ 4.6 %/1000 AA and for the Damocloids this is 12.2 $pm$ 2.0 %/1000 AA . No evidence of hydration on the surface of ACOs is found from their visible spectra. The slope and spectral class distribution of ACOs is similar to that of comets. The spectral classification, the spectral slope distribution of ACOs, and the lack of spectral features indicative of the presence of hydrated minerals on their surface, strongly suggest that ACOs are likely dormant or extinct comets.
We study the distributions of effective diameter ($D$), beaming parameter ($eta$), and visible geometric albedo ($p_V$) of asteroids in cometry orbits (ACOs) populations, derived from NASAs Wide-field Infrared Explorer (WISE) observations, and compare these with the same, independently determined properties of the comets. The near-Earth asteroid thermal model (NEATM) is used to compute the $D$, $p_V$ and $eta$. We obtained $D$ and $p_V$ for 49 ACOs in Jupiter family cometary orbits (JF-ACOs) and 16 ACOs in Halley-type orbits (Damocloids). We also obtained $eta$ for 45 of them. All but three JF-ACOs (95% of the sample) present a low albedo compatible with a cometary origin. The $p_V$ and $eta$ distributions of both ACO populations are very similar. For the entire sample of ACOs, the mean geometric albedo is $bar{p_V} = 0.05 pm 0.02$, ($bar{p_V} = 0.05 pm 0.01$ and $bar{p_V} =0.05 pm 0.02$ for JF-ACOs and Damocloids, respectively) compatible with a narrow albedo distribution similar to that of the Jupiter family comets (JFCs), with a $bar{p_V} sim 0.04$. The $bar{eta} =1.0 pm 0.2$. We find no correlations between $D$, $p_V$ , or $eta$. We compare the cumulative size distribution (CSD) of ACOs, Centaurs, and JFCs. Although the Centaur sample contains larger objects, the linear parts in their log-log plot of the CSDs presents a similar cumulative exponent ($beta = 1.85 pm 0.30$ and $1.76 pm 0.35$, respectively). The CSD for Damocloids presents a much shallower exponent $beta = 0.89 pm 0.17$. The CSD for JF-ACOs is shallower and shifted towards larger diameters with respect to the CSD of active JFCs, which suggests that the mantling process has a size dependency whereby large comets tend to reach an inactive stage faster than small ones. Finally, the population of JF-ACOs is comparable in number that of JFCs, although there are more tens-km JF-ACOs than JFCs.
We report on the results of a systematic search for associated asteroid families for all active asteroids known to date. We find that 10 out of 12 main-belt comets (MBCs) and 5 out of 7 disrupted asteroids are linked with known or candidate families, rates that have ~0.1% and ~6% probabilities, respectively, of occurring by chance, given an overall family association rate of 37% for asteroids in the inner solar system. We find previously unidentified family associations between 238P/Read and the candidate Gorchakov family, 311P/PANSTARRS and the candidate Behrens family, 324P/La Sagra and the Alauda family, 354P/LINEAR and the Baptistina family, P/2013 R3-B (Catalina-PANSTARRS) and the Mandragora family, P/2015 X6 (PANSTARRS) and the Aeolia family, P/2016 G1 (PANSTARRS) and the Adeona family, and P/2016 J1-A/B (PANSTARRS) and the Theobalda family. All MBCs with family associations belong to families that contain asteroids with primitive taxonomic classifications and low average reported albedos (pV_avg < 0.10), while disrupted asteroids with family associations belong to families that contain asteroids that span wider ranges of taxonomic types and average reported albedos (0.06 < pV_avg < 0.25). These findings are consistent with MBC activity being closely correlated to composition (i.e., whether an object is likely to contain ice), while disrupted asteroid activity is not as sensitive to composition. Given our results, we describe a sequence of processes by which the formation of young asteroid families could lead to the production of present-day MBCs.
FeI and NiI emission lines have recently been found in the spectra of 17 Solar System comets observed at heliocentric distances between 0.68 and 3.25 au and in the interstellar comet 2I/Borisov. The blackbody equilibrium temperature at the nucleus surface is too low to vaporize the refractory dust grains that contain metals, making the presence of iron and nickel atoms in cometary atmospheres a puzzling observation. Moreover, the measured NiI/FeI abundance ratio is on average one order of magnitude larger than the solar photosphere value. We report new measurements of FeI and NiI production rates and abundance ratios for the Jupiter-family comet (JFC) 46P/Wirtanen in its 2018 apparition and from archival data of the Oort-cloud comet (OCC) C/1996 B2 (Hyakutake). The comets were at geocentric distances of 0.09 au and 0.11 au, respectively. The emission line surface brightness was found to be inversely proportional to the projected distance to the nucleus, confirming that FeI and NiI atoms are ejected from the surface of the nucleus or originate from a short-lived parent. Considering the full sample of 20 comets, we find that the range of NiI/FeI abundance ratios is significantly larger in JFCs than in OCCs. We also unveil significant correlations between NiI/FeI and C$_2$/CN, C$_2$H$_6$/H$_2$O, and NH/CN. Carbon-chain- and NH-depleted comets show the highest NiI/FeI ratios. The existence of such relations suggests that the diversity of NiI/FeI abundance ratios in comets could be related to the cometary formation rather than to subsequent processes~in~the~coma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا