No Arabic abstract
We experimentally implement a system of cavity optomagnonics, where a sphere of ferromagnetic material supports whispering gallery modes (WGMs) for photons and the magnetostatic mode for magnons. We observe pronounced nonreciprocity and asymmetry in the sideband signals generated by the magnon-induced Brillouin scattering of light. The spin-orbit coupled nature of the WGM photons, their geometric birefringence and the time-reversal symmetry breaking in the magnon dynamics impose the angular-momentum selection rules in the scattering process and account for the observed phenomena. The unique features of the system may find interesting applications at the crossroad between quantum optics and spintronics.
In the recent years a series of experimental and theoretical efforts have centered around a new topic: the coherent, cavity-enhanced interaction between optical photons and solid state magnons. The resulting emerging field of Cavity Optomagnonics is of interest both at a fundamental level, providing a new platform to study light-matter interaction in confined structures, as well as for its possible relevance for hybrid quantum technologies. In this chapter I introduce the basic concepts of Cavity Optomagnonics and review some theoretical developments.
We demonstrate electromagnetic quantum states of single photons and of correlated photon pairs exhibiting hybrid entanglement between spin and orbital angular momentum. These states are obtained from entangled photon pairs emitted by spontaneous parametric down conversion, by employing a $q$-plate for coupling the spin and orbital degrees of freedom of a photon. Entanglement and contextual quantum behavior (that is also non-local, in the case of photon pairs) is demonstrated by the reported violation of the Clauser-Horne-Shimony-Holt inequality. In addition a classical analog of the hybrid spin-orbit photonic entanglement is reported and discussed.
Currently, there is a growing interest in studying the coherent interaction between magnetic systems and electromagnetic radiation in a cavity, prompted partly by possible applications in hybrid quantum systems. We propose a multimode cavity optomagnonic system based on antiferromagnetic insulators, where optical photons couple coherently to the two homogeneous magnon modes of the antiferromagnet. These have frequencies typically in the THz range, a regime so far mostly unexplored in the realm of coherent interactions, and which makes antiferromagnets attractive for quantum transduction from THz to optical frequencies. We derive the theoretical model for the coupled system, and show that it presents unique characteristics. In particular, if the antiferromagnet presents hard-axis magnetic anisotropy, the optomagnonic coupling can be tuned by a magnetic field applied along the easy axis. This allows to bring a selected magnon mode into and out of a dark mode, providing an alternative for a quantum memory protocol. The dynamical features of the driven system present unusual behavior due to optically induced magnon-magnon interactions, including regions of magnon heating for a red detuned driving laser. The multimode character of the system is evident in a substructure of the optomagnonically induced transparency window.
Secret sharing allows three or more parties to share secret information which can only be decrypted through collaboration. It complements quantum key distribution as a valuable resource for securely distributing information. Here we take advantage of hybrid spin and orbital angular momentum states to access a high dimensional encoding space, demonstrating a protocol that is easily scalable in both dimension and participants. To illustrate the versatility of our approach, we first demonstrate the protocol in two dimensions, extending the number of participants to ten, and then demonstrate the protocol in three dimensions with three participants, the highest realisation of participants and dimensions thus far. We reconstruct secrets depicted as images with a fidelity of up to 0.979. Moreover, our scheme exploits the use of conventional linear optics to emulate the quantum gates needed for transitions between basis modes on a high dimensional Hilbert space with the potential of up to 1.225 bits of encoding capacity per transmitted photon. Our work offers a practical approach for sharing information across multiple parties, a crucial element of any quantum network.
Cavity optomagnonics has emerged as a promising platform for studying coherent photon-spin interactions as well as tunable microwave-to-optical conversion. However, current implementation of cavity optomagnonics in ferrimagnetic crystals remains orders of magnitude larger in volume than state-of-the-art cavity optomechanical devices, resulting in very limited magneto-optical interaction strength. Here, we demonstrate a cavity optomagnonic device based on integrated waveguides and its application for microwave-to-optical conversion. By designing a ferrimagnetic rib waveguide to support multiple magnon modes with maximal mode overlap to the optical field, we realize a high magneto-optical cooperativity which is three orders of magnitude higher compared to previous records obtained on polished YIG spheres. Furthermore, we achieve tunable conversion of microwave photons at around 8.45 GHz to 1550 nm light with a broad conversion bandwidth as large as 16.1 MHz. The unique features of the system point to novel applications at the crossroad between quantum optics and magnonics.