Do you want to publish a course? Click here

Spin-orbit hybrid entanglement of photons and quantum contextuality

144   0   0.0 ( 0 )
 Added by Ebrahim Karimi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate electromagnetic quantum states of single photons and of correlated photon pairs exhibiting hybrid entanglement between spin and orbital angular momentum. These states are obtained from entangled photon pairs emitted by spontaneous parametric down conversion, by employing a $q$-plate for coupling the spin and orbital degrees of freedom of a photon. Entanglement and contextual quantum behavior (that is also non-local, in the case of photon pairs) is demonstrated by the reported violation of the Clauser-Horne-Shimony-Holt inequality. In addition a classical analog of the hybrid spin-orbit photonic entanglement is reported and discussed.



rate research

Read More

We experimentally implement a system of cavity optomagnonics, where a sphere of ferromagnetic material supports whispering gallery modes (WGMs) for photons and the magnetostatic mode for magnons. We observe pronounced nonreciprocity and asymmetry in the sideband signals generated by the magnon-induced Brillouin scattering of light. The spin-orbit coupled nature of the WGM photons, their geometric birefringence and the time-reversal symmetry breaking in the magnon dynamics impose the angular-momentum selection rules in the scattering process and account for the observed phenomena. The unique features of the system may find interesting applications at the crossroad between quantum optics and spintronics.
182 - Elie Wolfe 2014
This work develops analytic methods to quantitatively demarcate quantum reality from its subset of classical phenomenon, as well as from the superset of general probabilistic theories. Regarding quantum nonlocality, we discuss how to determine the quantum limit of Bell-type linear inequalities. In contrast to semidefinite programming approaches, our method allows for the consideration of inequalities with abstract weights, by means of leveraging the Hermiticity of quantum states. Recognizing that classical correlations correspond to measurements made on separable states, we also introduce a practical method for obtaining sufficient separability criteria. We specifically vet the candidacy of driven and undriven superradiance as schema for entanglement generation. We conclude by reviewing current approaches to quantum contextuality, emphasizing the operational distinction between nonlocal and contextual quantum statistics. We utilize our abstractly-weighted linear quantum bounds to explicitly demonstrate a set of conditional probability distributions which are simultaneously compatible with quantum contextuality while being incompatible with quantum nonlocality. It is noted that this novel statistical regime implies an experimentally-testable target for the Consistent Histories theory of quantum gravity.
Secret sharing allows three or more parties to share secret information which can only be decrypted through collaboration. It complements quantum key distribution as a valuable resource for securely distributing information. Here we take advantage of hybrid spin and orbital angular momentum states to access a high dimensional encoding space, demonstrating a protocol that is easily scalable in both dimension and participants. To illustrate the versatility of our approach, we first demonstrate the protocol in two dimensions, extending the number of participants to ten, and then demonstrate the protocol in three dimensions with three participants, the highest realisation of participants and dimensions thus far. We reconstruct secrets depicted as images with a fidelity of up to 0.979. Moreover, our scheme exploits the use of conventional linear optics to emulate the quantum gates needed for transitions between basis modes on a high dimensional Hilbert space with the potential of up to 1.225 bits of encoding capacity per transmitted photon. Our work offers a practical approach for sharing information across multiple parties, a crucial element of any quantum network.
A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high efficiency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (>1 MHz) fibre coupled electro-optic switches. Hybrid interfacing different platforms is a promising route to exploiting the advantages of existing technology and has permitted the demonstration of the multiplexing of four identical sources of single photons to one output. Since this is an integrated technology, it provides scalability and can immediately leverage any improvements in transmission, detection and photon production efficiencies.
A photonic process named as quantum state joining has been recently experimentally demonstrated [C. Vitelli et al., Nature Photon. 7, 521 (2013)] that corresponds to the transfer of the internal two-dimensional quantum states of two input photons, i.e., two photonic qubits, into the four-dimensional quantum state of a single photon, i.e., a photonic ququart. A scheme for the inverse process, namely quantum state splitting, has also been theoretically proposed. Both processes can be iterated in a cascaded layout, to obtain the joining and/or splitting of more than two qubits, thus leading to a general scheme for varying the number of photons in the system while preserving its total quantum state, or quantum information content. Here, we revisit these processes from a theoretical point of view. After casting the theory of the joining and splitting processes in the more general photon occupation number notation, we introduce some modified schemes that are in principle unitary (not considering the implementation of the CNOT gates) and do not require projection and feed-forward steps. This can be particularly important in the quantum state splitting case, to obtain a scheme that does not rely on postselection. Moreover, we formally prove that the quantum joining of two photon states with linear optics requires the use of at least one ancilla photon. This is somewhat unexpected, given that the demonstrated joining scheme involves the sequential application of two CNOT quantum gates, for which a linear optical scheme with just two photons and postselection is known to exist. Finally we explore the relationship between the joining scheme and the generation of clusters of multi-particle entangled states involving more than one qubit per particle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا