Do you want to publish a course? Click here

Mass Measurements Demonstrate a Strong N =28 Shell Gap in Argon

406   0   0.0 ( 0 )
 Added by Zach Meisel
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We present results from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. We report the first mass measurements of 48Ar and 49Ar and find atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively. These masses provide strong evidence for the closed shell nature of neutron number N=28 in argon, which is therefore the lowest even-Z element exhibiting the N=28 closed shell. The resulting trend in binding-energy differences, which probes the strength of the N=28 shell, compares favorably with shellmodel calculations in the sd-pf shell using SDPF-U and SDPF-MU Hamiltonians.



rate research

Read More

86 - C.M. Campbell , N. Aoi , D. Bazin 2006
Excited states in 40Si have been established by detecting gamma-rays coincident with inelastic scattering and nucleon removal reactions on a liquid hydrogen target. The low excitation energy, 986(5) keV, of the 2+[1] state provides evidence of a weakening in the N=28 shell closure in a neutron-rich nucleus devoid of deformation-driving proton collectivity.
We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN EBIT, and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME03). The 48,49,50K mass excesses are more precise than the AME03 values by more than one order of magnitude. For 48,49K, we find deviations by 7 sigma and 10 sigma, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME03 mass-excess values, and thus, increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.
112 - Y. Suzuki , M. Kimura 2021
Background: Recent accumulation of experimental data is revealing the nuclear deformation in vicinity of 42Si. This requests systematic theoretical studies to clarify more specific aspects of nuclear deformation and its causes. Purpose: The purpose of this study is to investigate the nature and cause of the nuclear deformations and its relation to the loss of the neutron magic number N = 28 in vicinity of 42Si. Method: The framework of antisymmetrized molecular dynamics with Gogny D1S density functional has been applied. The model assumes no spatial symmetry and can describe triaxial deformation. It also incorporates with the configuration mixing by the generator coordinate method. Results: We show that the shell effects and the loss of the magicity induce various nuclear deformations. In particular, the N = 26 and N = 30 isotones have triaxially deformed ground states. We also note that the erosion of the N = 28 magicity gradually occurs and has no definite boundaries. Conclusion: The present calculation predicts various nuclear deformations in vicinity of 42Si and suggests that the inter-band electric transitions are good measure for it. We also remark that the magicity is lost without the single-particle level inversion in the oblate deformed nuclei such as 42Si.
466 - B. Bastin , S. Grevy , D. Sohler 2007
The energies of the excited states in very neutron-rich $^{42}$Si and $^{41,43}$P have been measured using in-beam $gamma$-ray spectroscopy from the fragmentation of secondary beams of $^{42,44}$S at 39 A.MeV. The low 2$^+$ energy of $^{42}$Si, 770(19) keV, together with the level schemes of $^{41,43}$P provide evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that $^{42}$Si is best described as a well deformed oblate rotor.
The single-particle structure of the $N=27$ isotones provides insights into the shell evolution of neutron-rich nuclei from the doubly-magic $^{48}$Ca toward the drip line. $^{43}$S was studied employing the one-neutron knockout reaction from a radioactive $^{44}$S beam. Using a combination of prompt and delayed $gamma$-ray spectroscopy the level structure of $^{43}$S was clarified. Momentum distributions were analyzed and allowed for spin and parity assignments. The deduced spectroscopic factors show that the $^{44}$S ground-state configuration has a strong intruder component. The results were confronted with shell model calculations using two effective interactions. General agreement was found between the calculations, but strong population of states originating from the removal of neutrons from the $2p_{3/2}$ orbital in the experiment indicates that the breakdown of the $N=28$ magic number is more rapid than the theoretical calculations suggest.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا